ترغب بنشر مسار تعليمي؟ اضغط هنا

A First Look at Commercial 5G Performance on Smartphones

144   0   0.0 ( 0 )
 نشر من قبل Arvind Narayanan
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We conduct to our knowledge a first measurement study of commercial 5G performance on smartphones by closely examining 5G networks of three carriers (two mmWave carriers, one mid-band carrier) in three U.S. cities. We conduct extensive field tests on 5G performance in diverse urban environments. We systematically analyze the handoff mechanisms in 5G and their impact on network performance. We explore the feasibility of using location and possibly other environmental information to predict the network performance. We also study the app performance (web browsing and HTTP download) over 5G. Our study consumes more than 15 TB of cellular data. Conducted when 5G just made its debut, it provides a baseline for studying how 5G performance evolves, and identifies key research directions on improving 5G users experience in a cross-layer manner. We have released the data collected from our study (referred to as 5Gophers) at https://fivegophers.umn.edu/www20.

قيم البحث

اقرأ أيضاً

We are in the dawn of deep learning explosion for smartphones. To bridge the gap between research and practice, we present the first empirical study on 16,500 the most popular Android apps, demystifying how smartphone apps exploit deep learning in th e wild. To this end, we build a new static tool that dissects apps and analyzes their deep learning functions. Our study answers threefold questions: what are the early adopter apps of deep learning, what do they use deep learning for, and how do their deep learning models look like. Our study has strong implications for app developers, smartphone vendors, and deep learning R&D. On one hand, our findings paint a promising picture of deep learning for smartphones, showing the prosperity of mobile deep learning frameworks as well as the prosperity of apps building their cores atop deep learning. On the other hand, our findings urge optimizations on deep learning models deployed on smartphones, the protection of these models, and validation of research ideas on these models.
In this paper, we deliver a discussion regarding the role of Low-Power Wide-Area Networks (LPWAN) in the cellular Internet-of-Things (IoT) infrastructure to support massive Machine-Type Communications (mMTC) in next-generation wireless systems beyond 5G. We commence by presenting a performance analysis of current LPWAN systems, specifically LoRaWAN, in terms of coverage and throughput. The results obtained using analytic methods and network simulations are combined in the paper for getting a more comprehensive vision. Next, we identify possible performance bottlenecks, speculate on the characteristics of coming IoT applications, and seek to identify potential enhancements to the current technologies that may overcome the identified shortcomings.
Despite the growing popularity of video streaming over the Internet, problems such as re-buffering and high startup latency continue to plague users. In this paper, we present an end-to-end characterization of Yahoos video streaming service, analyzin g over 500 million video chunks downloaded over a two-week period. We gain unique visibility into the causes of performance degradation by instrumenting both the CDN server and the client player at the chunk level, while also collecting frequent snapshots of TCP variables from the server network stack. We uncover a range of performance issues, including an asynchronous disk-read timer and cache misses at the server, high latency and latency variability in the network, and buffering delays and dropped frames at the client. Looking across chunks in the same session, or destined to the same IP prefix, we see how some performance problems are relatively persistent, depending on the videos popularity, the distance between the client and server, and the clients operating system, browser, and Flash runtime.
Are 5G connection and UAVs merely parts of an extravagant and luxurious world, or are they essential parts of a practical world in a way we have yet to see? To aid in a direction to address the issue, we provide a practical framework for immersive ae rial monitoring for public safety. Because the framework is built on top of actual realizations and implementations designed to fulfill specific use cases, high level of practicality is ensured by nature. We first investigate 5G network performance on UAVs by isolating performance for different aspects of expected flight missions. Finally, the novel aerial monitoring scheme that we introduce relies on the recent advances brought by 5G networks and mitigates the inherent limitations of 5G network that we investigate in this paper.
In September 2020, the Broadband Forum published a new industry standard for measuring network quality. The standard centers on the notion of quality attenuation. Quality attenuation is a measure of the distribution of latency and packet loss between two points connected by a network path. A vital feature of the quality attenuation idea is that we can express detailed application requirements and network performance measurements in the same mathematical framework. Performance requirements and measurements are both modeled as latency distributions. To the best of our knowledge, existing models of the 802.11 WiFi protocol do not permit the calculation of complete latency distributions without assuming steady-state operation. We present a novel model of the WiFi protocol. Instead of computing throughput numbers from a steady-state analysis of a Markov chain, we explicitly model latency and packet loss. Explicitly modeling latency and loss allows for both transient and steady-state analysis of latency distributions, and we can derive throughput numbers from the latency results. Our model is, therefore, more general than the standard Markov chain methods. We reproduce several known results with this method. Using transient analysis, we derive bounds on WiFi throughput under the requirement that latency and packet loss must be bounded.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا