ﻻ يوجد ملخص باللغة العربية
In this paper, we deliver a discussion regarding the role of Low-Power Wide-Area Networks (LPWAN) in the cellular Internet-of-Things (IoT) infrastructure to support massive Machine-Type Communications (mMTC) in next-generation wireless systems beyond 5G. We commence by presenting a performance analysis of current LPWAN systems, specifically LoRaWAN, in terms of coverage and throughput. The results obtained using analytic methods and network simulations are combined in the paper for getting a more comprehensive vision. Next, we identify possible performance bottlenecks, speculate on the characteristics of coming IoT applications, and seek to identify potential enhancements to the current technologies that may overcome the identified shortcomings.
In this paper we advocate the use of device-to-device (D2D) communications in a LoRaWAN Low Power Wide Area Network (LPWAN). After overviewing the critical features of the LoRaWAN technology, we discuss the pros and cons of enabling the D2D communica
Recent years have witnessed the proliferation of Low-power Wide Area Networks (LPWANs) in the unlicensed band for various Internet-of-Things (IoT) applications. Due to the ultra-low transmission power and long transmission duration, LPWAN devices ine
Despite the proliferation of mobile devices in various wide-area Internet of Things applications (e.g., smart city, smart farming), current Low-Power Wide-Area Networks (LPWANs) are not designed to effectively support mobile nodes. In this paper, we
The last few years have seen the proliferation of low-power wide area networks like LoRa, Sigfox and 802.11ah, each of which use a different and sometimes proprietary coding and modulation scheme, work below the noise floor and operate on the same fr
Recent advances in Low-Power Wide-Area Networks have mitigated interference by using cloud assistance. Those methods transmit the RSSI samples and corrupted packets to the cloud to restore the correct message. However, the effectiveness of those meth