ﻻ يوجد ملخص باللغة العربية
Forecasting long-term human motion is a challenging task due to the non-linearity, multi-modality and inherent uncertainty in future trajectories. The underlying scene and past motion of agents can provide useful cues to predict their future motion. However, the heterogeneity of the two inputs poses a challenge for learning a joint representation of the scene and past trajectories. To address this challenge, we propose a model based on grid representations to forecast agent trajectories. We represent the past trajectories of agents using binary 2-D grids, and the underlying scene as a RGB birds-eye view (BEV) image, with an agent-centric frame of reference. We encode the scene and past trajectories using convolutional layers and generate trajectory forecasts using a Convolutional LSTM (ConvLSTM) decoder. Results on the publicly available Stanford Drone Dataset (SDD) show that our model outperforms prior approaches and outputs realistic future trajectories that comply with scene structure and past motion.
This paper considers the problem of multi-modal future trajectory forecast with ranking. Here, multi-modality and ranking refer to the multiple plausible path predictions and the confidence in those predictions, respectively. We propose Social-STAGE,
With only bounding-box annotations in the spatial domain, existing video scene text detection (VSTD) benchmarks lack temporal relation of text instances among video frames, which hinders the development of video text-related applications. In this pap
Predicting the future paths of an agents neighbors accurately and in a timely manner is central to the autonomous applications for collision avoidance. Conventional approaches, e.g., LSTM-based models, take considerable computational costs in the pre
Understanding crowd motion dynamics is critical to real-world applications, e.g., surveillance systems and autonomous driving. This is challenging because it requires effectively modeling the socially aware crowd spatial interaction and complex tempo
Recently, the methods based on Convolutional Neural Networks (CNNs) have gained popularity in the field of visual place recognition (VPR). In particular, the features from the middle layers of CNNs are more robust to drastic appearance changes than h