ترغب بنشر مسار تعليمي؟ اضغط هنا

Improvement of heavy flavor productions in a multi-phase transport model updated with modern nPDFs

305   0   0.0 ( 0 )
 نشر من قبل Liang Zheng
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently we have updated a multi-phase transport (AMPT) model with modern parton distribution functions of nuclei (nPDFs). Here we study open charm production in the updated AMPT model and compare to the experimental data from $pp$ and $AA$ collisions over a wide range of collision energies. Besides the update of nPDFs, we have removed the transverse momentum cutoff on initial heavy quark productions and also included the resultant heavy flavor cross section into the total minijet cross section in the initial condition as described by the HIJING model. We show that the AMPT model with these updates provides a much better description of the yields and transverse momentum spectra of various open charm hadrons in comparison with the experimental data. This lays the foundation for further heavy flavor studies within the transport model approach.



قيم البحث

اقرأ أيضاً

We report on broadly based systematic investigations of the modeling components for open heavy-flavor diffusion and energy loss in strongly interacting matter in their application to heavy-flavor observables in high-energy heavy-ion collisions, condu cted within an EMMI Rapid Reaction Task Force framework. Initial spectra including cold-nuclear-matter effects, a wide variety of space-time evolution models, heavy-flavor transport coefficients, and hadronization mechanisms are scrutinized in an effort to quantify pertinent uncertainties in the calculations of nuclear modification factors and elliptic flow of open heavy-flavor particles in nuclear collisions. We develop procedures for error assessments and criteria for common model components to improve quantitative estimates for the (low-momentum) heavy-flavor diffusion coefficient as a long-wavelength characteristic of QCD matter as a function of temperature, and for energy loss coefficients of high-momentum heavy-flavor particles.
Because the properties of the QCD phase transition and the chiral magnetic effect (CME) depend on the number of quark flavors ($N_{f}$) and quark mass, relativistic heavy-ion collisions provide a natural environment to investigate the flavor features if quark deconfinement occurs. We introduce an initial two-flavor or three-flavor dipole charge separation into a multiphase transport (AMPT) model to investigate the flavor dependence of the CME. By taking advantage of the recent ALICE data of charge azimuthal correlations with identified hadrons, we attempt to disentangle two-flavor and three-flavor CME scenarios in Pb+Pb collisions at 2.76 TeV. We find that the experimental data show a certain potential to distinguish the two scenarios, therefore we further suggest to collect more data to clarify the possible flavor dependence in future experiments.
A key ingredient of hydrodynamical modeling of relativistic heavy ion collisions is thermal initial conditions, an input that is the consequence of a pre-thermal dynamics which is not completely understood yet. In the paper we employ a recently devel oped energy-momentum transport model of the pre-thermal stage to study influence of the alternative initial states in nucleus-nucleus collisions on flow and energy density distributions of the matter at the starting time of hydrodynamics. In particular, the dependence of the results on isotropic and anisotropic initial states is analyzed. It is found that at the thermalization time the transverse flow is larger and the maximal energy density is higher for the longitudinally squeezed initial momentum distributions. The results are also sensitive to the relaxation time parameter, equation of state at the thermalization time, and transverse profile of initial energy density distribution: Gaussian approximation, Glauber Monte Carlo profiles, etc. Also, test results ensure that the numerical code based on the energy-momentum transport model is capable of providing both averaged and fluctuating initial conditions for the hydrodynamic simulations of relativistic nuclear collisions.
Using the string melting version of a multiphase transport (AMPT) model, we focus on the evolution of thermodynamic properties of the central cell of parton matter produced in Au+Au collisions ranging from 200 GeV down to 2.7 GeV. The temperature and baryon chemical potential are calculated for Au+Au collisions at different energies to locate their evolution trajectories in the QCD phase diagram. The evolution of pressure anisotropy indicates that only partial thermalization can be achieved, especially at lower energies. Through event-by-event temperature fluctuations, we present the specific heat of the partonic matter as a function of temperature and baryon chemical potential that is related to the partonic matters approach to equilibrium.
A Linearized Boltzmann Transport (LBT) model coupled with hydrodynamical background is established to describe the evolution of jet shower partons and medium excitations in high energy heavy-ion collisions. We extend the LBT model to include both ela stic and inelastic processes for light and heavy partons in the quark-gluon plasma. A hybrid model of fragmentation and coalescence is developed for the hadronization of heavy quarks. Within this framework, we investigate how heavy flavor observables depend on various ingredients, such as different energy loss and hadronization mechanisms, the momentum and temperature dependences of the transport coefficients, and the radial flow of the expanding fireball. Our model calculations show good descriptions of the $D$ meson suppression and elliptic flow observed at the LHC and RHIC. The prediction for the Pb-Pb collisions at $sqrt{s_mathrm{NN}}$=5.02~TeV is provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا