ﻻ يوجد ملخص باللغة العربية
We prove a monotonicity property of the Hurwitz zeta function which, in turn, translates into a chain of inequalities for polygamma functions of different orders. We provide a probabilistic interpretation of our result by exploiting a connection between Hurwitz zeta function and the cumulants of the beta-exponential distribution.
In this paper we give an explicit and algorithmic description of Graver basis for the toric ideal associated with a simple undirected graph and apply the basis for testing the beta model of random graphs by Markov chain Monte Carlo method.
The infinite-dimensional Hilbert sphere $S^infty$ has been widely employed to model density functions and shapes, extending the finite-dimensional counterpart. We consider the Frechet mean as an intrinsic summary of the central tendency of data lying
Our problem is to find a good approximation to the P-value of the maximum of a random field of test statistics for a cone alternative at each point in a sample of Gaussian random fields. These test statistics have been proposed in the neuroscience li
The linear exponential distribution is a generalization of the exponential and Rayleigh distributions. This distribution is one of the best models to fit data with increasing failure rate (IFR). But it does not provide a reasonable fit for modeling d
We establish exponential bounds for the hypergeometric distribution which include a finite sampling correction factor, but are otherwise analogous to bounds for the binomial distribution due to Leon and Perron (2003) and Talagrand (1994). We also est