ﻻ يوجد ملخص باللغة العربية
When estimating the relevancy between a query and a document, ranking models largely neglect the mutual information among documents. A common wisdom is that if two documents are similar in terms of the same query, they are more likely to have similar relevance score. To mitigate this problem, in this paper, we propose a multi-agent reinforced ranking model, named MarlRank. In particular, by considering each document as an agent, we formulate the ranking process as a multi-agent Markov Decision Process (MDP), where the mutual interactions among documents are incorporated in the ranking process. To compute the ranking list, each document predicts its relevance to a query considering not only its own query-document features but also its similar documents features and actions. By defining reward as a function of NDCG, we can optimize our model directly on the ranking performance measure. Our experimental results on two LETOR benchmark datasets show that our model has significant performance gains over the state-of-art baselines. We also find that the NDCG shows an overall increasing trend along with the step of interactions, which demonstrates that the mutual information among documents helps improve the ranking performance.
Online Learning to Rank (OL2R) eliminates the need of explicit relevance annotation by directly optimizing the rankers from their interactions with users. However, the required exploration drives it away from successful practices in offline learning
We present a multi-agent actor-critic method that aims to implicitly address the credit assignment problem under fully cooperative settings. Our key motivation is that credit assignment among agents may not require an explicit formulation as long as
Role-based learning holds the promise of achieving scalable multi-agent learning by decomposing complex tasks using roles. However, it is largely unclear how to efficiently discover such a set of roles. To solve this problem, we propose to first deco
In cooperative multi-agent reinforcement learning (c-MARL), agents learn to cooperatively take actions as a team to maximize a total team reward. We analyze the robustness of c-MARL to adversaries capable of attacking one of the agents on a team. Thr
We study multi-agent reinforcement learning (MARL) in a time-varying network of agents. The objective is to find localized policies that maximize the (discounted) global reward. In general, scalability is a challenge in this setting because the size