ﻻ يوجد ملخص باللغة العربية
Let $X$ be the constrained random walk on ${mathbb Z}_+^2$ having increments $(1,0)$, $(-1,1)$, $(0,-1)$ with jump probabilities $lambda(M_k)$, $mu_1(M_k)$, and $mu_2(M_k)$ where $M$ is an irreducible aperiodic finite state Markov chain. The process $X$ represents the lengths of two tandem queues with arrival rate $lambda(M_k)$, and service rates $mu_1(M_k)$, and $mu_2(M_k)$. We assume that the average arrival rate with respect to the stationary measure of $M$ is less than the average service rates, i.e., $X$ is assumed stable. Let $tau_n$ be the first time when the sum of the components of $X$ equals $n$ for the first time. Let $Y$ be the random walk on ${mathbb Z} times {mathbb Z}_+$ having increments $(-1,0)$, $(1,1)$, $(0,-1)$ with probabilities $lambda(M_k)$, $mu_1(M_k)$, and $mu_2(M_k)$. Let $tau$ be the first time the components of $Y$ are equal. For $x in {mathbb R}_+^2$, $x(1) + x(2) < 1$, $x(1) > 0$, and $x_n = lfloor nx rfloor$, we show that $P_{(n-x_n(1),x_n(2)),m)}( tau < infty)$ approximates $P_{(x_n,m)}(tau_n < tau_0)$ with exponentially vanishing relative error as $nrightarrow infty$. For the analysis we define a characteristic matrix in terms of the jump probabilities of $(X,M).$ The $0$-level set of the characteristic polynomial of this matrix defines the characteristic surface; conjugate points on this surface and the associated eigenvectors of the characteristic matrix are used to define (sub/super) harmonic functions which play a fundamental role both in our analysis and the computation / approximation of $P_{(y,m)}(tau < infty).$
Let $X$ be the constrained random walk on ${mathbb Z}_+^d$ representing the queue lengths of a stable Jackson network and $x$ its initial position. Let $tau_n$ be the first time the sum of the components of $X$ equals $n$. $p_n doteq P_x(tau_n < tau_
In order to approximate the exit time of a one-dimensional diffusion process, we propose an algorithm based on a random walk. Such an algorithm so-called Walk on Moving Spheres was already introduced in the Brownian context. The aim is therefore to g
We view the classical Lindeberg principle in a Markov process setting to establish a universal probability approximation framework by It^{o}s formula and Markov semigroup. As applications, we consider approximating a family of online stochastic gradi
We consider random walk on dynamical percolation on the discrete torus $mathbb{Z}_n^d$. In previous work, mixing times of this process for $p<p_c(mathbb{Z}^d)$ were obtained in the annealed setting where one averages over the dynamical percolation en
Consider a discrete-time one-dimensional supercritical branching random walk. We study the probability that there exists an infinite ray in the branching random walk that always lies above the line of slope $gamma-epsilon$, where $gamma$ denotes the