ﻻ يوجد ملخص باللغة العربية
Normally one thinks of the observed cosmological constant as being so small that it can be utterly neglected on typical astrophysical scales, only affecting extremely large-scale cosmology at Gigaparsec scales. Indeed, in those situations where the cosmological constant only has a quantitative influence on the physics, a separation of scales argument guarantees the effect is indeed negligible. The exception to this argument arises when the presence of a cosmological constant qualitatively changes the physics. One example of this phenomenon is the existence of outermost stable circular orbits (OSCOs) in the presence of a positive cosmological constant. Remarkably the size of these OSCOs are of a magnitude to be astrophysically interesting. For instance: for galactic masses the OSCOs are of order the inter-galactic spacing, for galaxy cluster masses the OSCOs are of order the size of the cluster.
We study the impact of a non-vanishing (positive) cosmological constant on the innermost and outermost stable circular orbits (ISCOs and OSCOs, respectively) within massive gravity in four dimensions. The gravitational field generated by a point-like
We show that Dark Matter consisting of ultralight bosons in a Bose-Einstein condensate induces, via its quantum potential, a small positive cosmological constant which matches the observed value. This explains its origin and why the densities of Dark Matter and Dark Energy are approximately equal.
We consider the Kepler two-body problem in presence of the cosmological constant $Lambda$. Contrary to the classical case, where finite solutions exist for any angular momentum of the system $L$, in presence of $Lambda$ finite solutions exist only in
A scalar field non-minimally coupled to certain geometric [or matter] invariants which are sourced by [electro]vacuum black holes (BHs) may spontaneously grow around the latter, due to a tachyonic instability. This process is expected to lead to a ne
The static, apparently cylindrically symmetric vacuum solution of Linet and Tian for the case of a positive cosmological constant $Lambda$ is shown to have toroidal symmetry and, besides $Lambda$, to include three arbitrary parameters. It possesses t