ﻻ يوجد ملخص باللغة العربية
The static, apparently cylindrically symmetric vacuum solution of Linet and Tian for the case of a positive cosmological constant $Lambda$ is shown to have toroidal symmetry and, besides $Lambda$, to include three arbitrary parameters. It possesses two curvature singularities, of which one can be removed by matching it across a toroidal surface to a corresponding region of the dust-filled Einstein static universe. In four dimensions, this clarifies the geometrical properties, the coordinate ranges and the meaning of the parameters in this solution. Some other properties and limiting cases of this space-time are described. Its generalisation to any higher number of dimensions is also explicitly given.
We investigate the geodesics kinematics and dynamics in the Linet-Tian metric with Lambda<0 and compare with the results for the Levi-Civita metric, when Lambda=0. This is used to derive new stability results about the geodesics dynamics in static va
We analyse the geodesics dynamics in cylindrically symmetric vacuum spacetimes with Lambda>0 and compare it to the Lambda=0 and Lambda<0 cases. When Lambda>0 there are two singularities in the metric which brings new qualitative features to the dynam
We investigate the matching, across cylindrical surfaces, of static cylindrically symmetric conformally flat spacetimes with a cosmological constant $Lambda$, satisfying regularity conditions at the axis, to an exterior Linet-Tian spacetime. We prove
A scalar field non-minimally coupled to certain geometric [or matter] invariants which are sourced by [electro]vacuum black holes (BHs) may spontaneously grow around the latter, due to a tachyonic instability. This process is expected to lead to a ne
Normally one thinks of the observed cosmological constant as being so small that it can be utterly neglected on typical astrophysical scales, only affecting extremely large-scale cosmology at Gigaparsec scales. Indeed, in those situations where the c