ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure-Induced Re-entrant transition in NbS3 Phases: Combined Raman Scattering and X-ray Diffraction Study

69   0   0.0 ( 0 )
 نشر من قبل M Hafiez
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the evolution of charge density wave states under pressure for two NbS3 phases triclinic (phase I) and monoclinic (phase II) at room temperature. Raman and X-ray diffraction (XRD) techniques are applied. The x-ray studies on the monoclinic phase under pressure show a compression of the lattice at different rates below and above 7 GPa but without a change in space group symmetry. The Raman spectra of the two phases evolve similarly with pressure; all peaks almost disappear in the 6-8 GPa range, indicating a transition from an insulating to a metallic state, and peaks at new positions appear above 8 GPa. The results suggest suppression of the ambient charge-density waves and their subsequent recovery with new orderings above 8 GPa.



قيم البحث

اقرأ أيضاً

We report a study of the structural phase transitions induced by pressure in bulk black phosphorus by using both synchrotron x-ray diffraction for pressures up to 12.2 GPa and Raman spectroscopy up to 18.2 GPa. Very recently black phosphorus attracte d large attention because of the unique properties of fewlayers samples (phosphorene), but some basic questions are still open in the case of the bulk system. As concerning the presence of a Raman spectrum above 10 GPa, which should not be observed in an elemental simple cubic system, we propose a new explanation by attributing a key role to the non-hydrostatic conditions occurring in Raman experiments. Finally, a combined analysis of Raman and XRD data allowed us to obtain quantitative information on presence and extent of coexistences between different structural phases from ~5 up to ~15 GPa. This information can have an important role in theoretical studies on pressure-induced structural and electronic phase transitions in black phosphorus.
Cubic boron phosphide BP has been studied in situ by X-ray diffraction and Raman scattering up to 55 GPa at 300 K in a diamond anvil cell. The bulk modulus of B0 = 174(2) GPa has been established, which is in excellent agreement with our ab initio ca lculations. The data on Raman shift as a function of pressure, combined with equation-of-state data, allowed us to estimate the Gruneisen parameters of the TO and LO modes of zinc-blende structure, {gamma}GTO = 1.16 and {gamma}GLO = 1.04, just like in the case of other AIIIBV diamond-like phases, for which {gamma}GTO > {gamma}GLO = 1. We also established that the pressure dependence of the effective electro-optical constant {alpha} is responsible for a strong change in relative intensities of the TO and LO modes from ITO/ILO ~0.25 at 0.1 MPa to ITO/ILO ~2.5 at 45 GPa, for which we also find excellent agreement between experiment and theory.
SrMoO4 was studied under compression up to 25 GPa by angle-dispersive x-ray diffraction. A phase transition was observed from the scheelite-structured ambient phase to a monoclinic fergusonite phase at 12.2(9) GPa with cell parameters a = 5.265(9) A, b = 11.191(9) A, c = 5.195 (5) A, and beta = 90.9, Z = 4 at 13.1 GPa. There is no significant volume collapse at the phase transition. No additional phase transitions were observed and on release of pressure the initial phase is recovered, implying that the observed structural modifications are reversible. The reported transition appeared to be a ferroelastic second-order transformation producing a structure that is a monoclinic distortion of the low-pressure phase and was previously observed in compounds isostructural to SrMoO4. A possible mechanism for the transition is proposed and its character is discussed in terms of the present data and the Landau theory. Finally, the EOS is reported and the anisotropic compressibility of the studied crystal is discussed in terms of the compression of the Sr-O and Mo-O bonds.
We report pressure tuned Raman and x-ray diffraction data of Bi1.98Sr2.06Y0.68Cu2O8 revealing a critical pressure at 21 GPa with anomalies in six physical quantities: electronic Raman background, electron-phonon coupling, spectral weight transfer fro m high to low frequency, density dependent behaviour of phonon and magnon frequencies, and a compressibility change in the c-axis. For the first time in a cuprate, mobile charge carriers, lattice, and magnetism all show anomalies at a distinct critical pressure in the same experimental setting. Furthermore, the Raman spectral changes are similar to that seen traversing the superconducting dome with doping, suggesting that the critical pressure at 21 GPa is related to the much discussed critical point at optimal doping.
We report the pressure dependence of perovskite distortions in rare-earth (R) orthochromites (RCrO3) probed using Raman scattering in order to investigate the origin of structural transition from orthorhombic Pnma to rhombohedral R-3C phase in LaCrO3 . The pressure induced changes in octahedral tilt modes demonstrates that tilt distortions are suppressed in LaCrO3 and are enhanced in the remaining members of RCrO3 family. This crossover between the two opposite pressure behaviors occurs at a critical R-ion radius of 1.20 {AA}. We attempted to establish the relation between this unusual crossover and compressibility at Cr- and R-sites by probing Raman phonon modes sensitive to the mean bond strength of Cr-O and R-O respectively. Finally, we study the bond-length splitting of both CrO6 and RO12 polyhedra to ascertain the role of polyhedral self distortion in determining the pressure dependent evolution of perovskite distortions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا