ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent tunnelling across a quantum point contact in the quantum Hall regime

181   0   0.0 ( 0 )
 نشر من قبل Frederico Martins
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The unique properties of quantum Hall devices arise from the ideal one-dimensional edge states that form in a two-dimensional electron system at high magnetic field. Tunnelling between edge states across a quantum point contact (QPC) has already revealed rich physics, like fractionally charged excitations, or chiral Luttinger liquid. Thanks to scanning gate microscopy, we show that a single QPC can turn into an interferometer for specific potential landscapes. Spectroscopy, magnetic field and temperature dependences of electron transport reveal a quantitatively consistent interferometric behavior of the studied QPC. To explain this unexpected behavior, we put forward a new model which relies on the presence of a quantum Hall island at the centre of the constriction as well as on different tunnelling paths surrounding the island, thereby creating a new type of interferometer. This work sets the ground for new device concepts based on coherent tunnelling.

قيم البحث

اقرأ أيضاً

Transmission through a quantum point contact (QPC) in the quantum Hall regime usually exhibits multiple resonances as a function of gate voltage and high nonlinearity in bias. Such behavior is unpredictable and changes sample by sample. Here, we repo rt the observation of a sharp transition of the transmission through an open QPC at finite bias, which was observed consistently for all the tested QPCs. It is found that the bias dependence of the transition can be fitted to the Fermi-Dirac distribution function through universal scaling. The fitted temperature matches quite nicely to the electron temperature measured via shot-noise thermometry. While the origin of the transition is unclear, we propose a phenomenological model based on our experimental results that may help to understand such a sharp transition. Similar transitions are observed in the fractional quantum Hall regime, and it is found that the temperature of the system can be measured by rescaling the quasiparticle energy with the effective charge ($e^*=e/3$). We believe that the observed phenomena can be exploited as a tool for measuring the electron temperature of the system and for studying the quasiparticle charges of the fractional quantum Hall states.
We analyze tunneling of non-Abelian quasiparticles between the edges of a quantum Hall droplet at Landau level filling fraction nu=5/2, assuming that the electrons in the first excited Landau level organize themselves in the non-Abelian Moore-Read Pf affian state. We formulate a bosonized theory of the modes at the two edges of a Hall bar; an effective spin-1/2 degree of freedom emerges in the description of a point contact. We show how the crossover from the high-temperature regime of weak quasiparticle tunneling between the edges of the droplet, with 4-terminal R_{xx} scaling as T^{-3/2}, to the low-temperature limit, with R_{xx} - h/(10 e^2) scaling as -T^4, is closely related to the two-channel Kondo effect. We give a physical interpretation for the entropy of ln(2sqrt{2}) which is lost in the flow from the ultraviolet to the infrared.
We present an experiment where the quantum coherence in the edge states of the integer quantum Hall regime is tuned with a decoupling gate. The coherence length is determined by measuring the visibility of quantum interferences in a Mach-Zehnder inte rferometer as a function of temperature, in the quantum Hall regime at filling factor two. The temperature dependence of the coherence length can be varied by a factor of two. The strengthening of the phase coherence at finite temperature is shown to arise from a reduction of the coupling between co-propagating edge states. This opens the way for a strong improvement of the phase coherence of Quantum Hall systems. The decoupling gate also allows us to investigate how inter-edge state coupling influence the quantum interferences dependence on the injection bias. We find that the finite bias visibility can be decomposed into two contributions: a Gaussian envelop which is surprisingly insensitive to the coupling, and a beating component which, on the contrary, is strongly affected by the coupling.
We report an investigation of quantum Hall induced currents by simultaneous measurements of their magnetic moment and their effect on the conductance of a quantum point contact (QPC). Features in the magnetic moment and QPC resistance are correlated at Landau-level filling factors nu=1, 2 and 4, which demonstrates the common origin of the effects. Temperature and non-linear sweep rate dependences are observed to be similar for the two effects. Furthermore, features in the noise of the induced currents, caused by breakdown of the quantum Hall effect, are observed to have clear correlations between the two measurements. In contrast, there is a distinct difference in the way that the induced currents decay with time when the sweeping field halts at integer filling factor. We attribute this difference to the fact that, while both effects are sensitive to the magnitude of the induced current, the QPC resistance is also sensitive to the proximity of the current to the QPC split-gate. Although it is clearly demonstrated that induced currents affect the electrostatics of a QPC, the reverse effect, the QPC influencing the induced current, was not observed.
We explore transport across an ultra-small Quantum Hall Island (QHI) formed by closed quan- tum Hall edge states and connected to propagating edge channels through tunnel barriers. Scanning gate microscopy and scanning gate spectroscopy are used to f irst localize and then study a single QHI near a quantum point contact. The presence of Coulomb diamonds in the spectroscopy con- firms that Coulomb blockade governs transport across the QHI. Varying the microscope tip bias as well as current bias across the device, we uncover the QHI discrete energy spectrum arising from electronic confinement and we extract estimates of the gradient of the confining potential and of the edge state velocity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا