ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum noise in carbon nanotubes as a probe of correlations in the Kondo regime

77   0   0.0 ( 0 )
 نشر من قبل Richard Deblock
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Most of the time, electronic excitations in mesoscopic conductors are well described, around equilibrium, by non-interacting Landau quasi-particles. This allows a good understanding of the transport properties in the linear regime. However, the role of interaction in the non-equilibrium properties beyond this regime has still to be established. A paradigmatic example is the Kondo many body state, which can be realized in a carbon nanotube (CNT) quantum dot for temperatures below the Kondo temperature $T_K$. As CNT possess spin and orbital quantum numbers, it is possible to investigate the twofold degenerate SU(2) Kondo effect as well as the four fold degenerate SU(4) state by tuning the degeneracies and filling factor. This article aims at providing a comprehensive review on our recent works on the Kondo correlations probed by quantum noise measurement both at low and high frequencies and demonstrate how current noise measurements yield new insight on interaction effects and dynamics of a Kondo correlated state.

قيم البحث

اقرأ أيضاً

The current emission noise of a carbon nanotube quantum dot in the Kondo regime is measured at frequencies $ u$ of the order or higher than the frequency associated with the Kondo effect $k_B T_K/h$, with $T_K$ the Kondo temperature. The carbon nanot ube is coupled via an on-chip resonant circuit to a quantum noise detector, a superconductor-insulator-superconductor junction. We find for $h u approx k_B T_K$ a Kondo effect related singularity at a voltage bias $eV approx h u $, and a strong reduction of this singularity for $h u approx 3 k_B T_K$, in good agreement with theory. Our experiment constitutes a new original tool for the investigation of the non-equilibrium dynamics of many-body phenomena in nanoscale devices.
The connection of electrical leads to wire-like molecules is a logical step in the development of molecular electronics, but also allows studies of fundamental physics. For example, metallic carbon nanotubes are quantum wires that have been found to act as one-dimensional quantum dots, Luttinger-liquids, proximity-induced superconductors and ballistic and diffusive one-dimensional metals. Here we report that electrically-contacted single-wall nanotubes can serve as powerful probes of Kondo physics, demonstrating the universality of the Kondo effect. Arising in the prototypical case from the interaction between a localized impurity magnetic moment and delocalized electrons in a metallic host, the Kondo effect has been used to explain enhanced low-temperature scattering from magnetic impurities in metals, and also occurs in transport through semiconductor quantum dots. The far higher tunability of dots (in our case, nanotubes) compared with atomic impurities renders new classes of Kondo-like effects accessible. Our nanotube devices differ from previous systems in which Kondo effects have been observed, in that they are one-dimensional quantum dots with three-dimensional metal (gold) reservoirs. This allows us to observe Kondo resonances for very large electron number (N) in the dot, and approaching the unitary limit (where the transmission reaches its maximum possible value). Moreover, we detect a previously unobserved Kondo effect, occurring for even values of N in a magnetic field.
We study the low frequency current correlations of an individual single-walled carbon nanotube at liquid He temperature. We have distinguished two physical regimes -- zero dimensional quantum dot and one dimensional quantum wire -- in terms of an ene rgy spacing from the finite tube length in both differential conductance and shot noise measurements. In a one dimensional wire regime, we observed a highly suppressed shot noise from all measured tube devices, suggesting that electron-electron interactions play an important role.
Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries, enabled by sophisticated fabrication, have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the two. In single quantum dots defined in short lengths of nanotube, the energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are revealed by Coulomb blockade spectroscopy. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli blockade. This can be exploited to read out spin and valley qubits, and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one dimension strongly modifies their transport behaviour. Interaction between electrons inside and outside a quantum dot is manifested in SU(4) Kondo behavior and level renormalization. Interaction within a dot leads to Wigner molecules and more complex correlated states. This review takes an experimental perspective informed by recent advances in theory. As well as the well-understood overall picture, we also state clearly open questions for the field. These advances position nanotubes as a leading system for the study of spin and valley physics in one dimension where electronic disorder and hyperfine interaction can both be reduced to a very low level.
129 - A. Eichler , R. Deblock , M. Weiss 2009
We investigate the Josephson current in a single wall carbon nanotube connected to superconducting electrodes. We focus on the parameter regime in which transport is dominated by Kondo physics. A sizeable supercurrent is observed for odd number of el ectrons on the nanotube when the Kondo temperature Tk is sufficiently large compared to the superconducting gap. On the other hand when, in the center of the Kondo ridge, Tk is slightly smaller than the superconducting gap, the supercurrent is found to be extremely sensitive to the gate voltage Vbg. Whereas it is largely suppressed at the center of the ridge, it shows a sharp increase at a finite value of Vbg. This increase can be attributed to a doublet-singlet transition of the spin state of the nanotube island leading to a pi shift in the current phase relation. This transition is very sensitive to the asymmetry of the contacts and is in good agreement with theoretical predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا