ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimization of surface flux transport models for the solar polar magnetic field

55   0   0.0 ( 0 )
 نشر من قبل Kristof Petrovay
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The choice of free parameters in surface flux transport (SFT) models describing the evolution of the large-scale poloidal magnetic field of the Sun is critical for the correct reproduction of the polar magnetic flux built up during a solar cycle, which in turn is known to be a good predictor of the amplitude of the upcoming cycle. For an informed choice of parameters it is important to understand the effect and interplay of the various parameters and to optimize the models for the polar magnetic field. Here we present the results of a large-scale systematic study of the parameter space in an SFT model where the source term representing the net effect of tilted flux emergence was chosen to represent a typical, average solar cycle as described by observations. Comparing the results with observational constraints on the spatiotemporal variation of the polar magnetic field, as seen in magnetograms for the last four solar cycles, we mark allowed and excluded regions in the 3D parameter space defined by the flow amplitude u0, the magnetic diffusivity eta and the decay time scale tau, for three different assumed meridional flow profiles. Without a significant decay term in the SFT equation (i.e., for tau >10 yr) the global dipole moment reverses too late in the cycle for all flow profiles and parameters, providing independent supporting evidence for the need of a decay term, even in the case of identical cycles. An allowed domain is found to exist for tau values in the 5-10 yr range for all flow profiles considered. Generally higher values of eta (500-800 km^2/s) are preferred though some solutions with lower eta are still allowed.

قيم البحث

اقرأ أيضاً

The motions of small-scale magnetic flux elements in the solar photosphere can provide some measure of the Lagrangian properties of the convective flow. Measurements of these motions have been critical in estimating the turbulent diffusion coefficien t in flux-transport dynamo models and in determining the Alfven wave excitation spectrum for coronal heating models. We examine the motions of internetwork flux elements in a 24 hour long Hinode/NFI magnetogram sequence with 90 second cadence, and study both the scaling of their mean squared displacement and the shape of their displacement probability distribution as a function of time. We find that the mean squared displacement scales super-diffusively with a slope of about 1.48. Super-diffusive scaling has been observed in other studies for temporal increments as small as 5 seconds, increments over which ballistic scaling would be expected. Using high-cadence MURaM simulations, we show that the observed super-diffusive scaling at short temporal increments is a consequence of random changes in the barycenter positions due to flux evolution. We also find that for long temporal increments, beyond granular lifetimes, the observed displacement distribution deviates from that expected for a diffusive process, evolving from Rayleigh to Gaussian. This change in the distribution can be modeled analytically by accounting for supergranular advection along with motions due to granulation. These results complicate the interpretation of magnetic element motions as strictly advective or diffusive on short and long timescales and suggest that measurements of magnetic element motions must be used with caution in turbulent diffusion or wave excitation models. We propose that passive trace motions in measured photospheric flows may yield more robust transport statistics.
With multiple vantage points around the Sun, STEREO and SDO imaging observations provide a unique opportunity to view the solar surface continuously. We use He II 304 A data from these observatories to isolate and track ten active regions and study t heir long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infer the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport (AFT) model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active regions magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 AA images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible.
48 - Y. Iida 2016
The solar dynamo problem is the question of how the cyclic variation in the solar magnetic field is maintained. One of the important processes is the transport of magnetic flux by surface convection. To reveal this process, the dependence of the squa red displacement of magnetic flux concentrations upon the elapsed time is investigated in this paper via a feature-recognition technique and a continual five-day magnetogram. This represents the longest time scale over which a satellite observation has ever been performed for this problem. The dependence is found to follow a power-law and differ significantly from that of diffusion transport. Furthermore there is a change in the behavior at a spatial scale of 10^{3.8} km. A super-diffusion behavior with an index of 1.4 is found on smaller scales, while changing to a sub-diffusion behavior with an index of 0.6 on larger ones. I interpret this difference in the transport regime as coming from the network-flow pattern.
We study the process of magnetic field annihilation and reconnection in simulations of magnetised solar photosphere and chromosphere with magnetic fields of opposite polarities and constant numerical resistivity. Exact analytical solutions for reconn ective annihilations are used to interpret the features of magnetic reconnection in simulations of flux cancellation in the solar atmosphere. We use MURaM high-resolution photospheric radiative magneto-convection simulations to demonstrate the presence of magnetic field reconnection consistent with the magnetic flux pile-up models. Also, a simulated data-driven chromospheric magneto-hydrodynamic simulation is used to demonstrate magnetic field and flow structures, which are similar to the ones theoretically predicted. Both simulations demonstrate flow and magnetic field structures roughly consistent with accelerated reconnection with magnetic flux pile-up. The presence of standard Sweet-Parker type reconnection is also demonstrated in stronger photospheric magnetic fields.
In this ISSI-supported series of studies on magnetic helicity in the Sun, we systematically implement different magnetic helicity calculation methods on high-quality solar magnetogram observations. We apply finite-volume, discrete flux tube (in parti cular, connectivity-based) and flux-integration methods to data from Hinodes Solar Optical Telescope. The target is NOAA active region 10930 during a ~1.5 day interval in December 2006 that included a major eruptive flare (SOL2006-12-13T02:14X3.4). Finite-volume and connectivity-based methods yield instantaneous budgets of the coronal magnetic helicity, while the flux-integration methods allow an estimate of the accumulated helicity injected through the photosphere. The objectives of our work are twofold: A cross-validation of methods, as well as an interpretation of the complex events leading to the eruption. To the first objective, we find (i) strong agreement among the finite-volume methods, (ii) a moderate agreement between the connectivity-based and finite-volume methods, (iii) an excellent agreement between the flux-integration methods, and (iv) an overall agreement between finite-volume and flux-integration based estimates regarding the predominant sign and magnitude of the helicity. To the second objective, we are confident that the photospheric helicity flux significantly contributed to the coronal helicity budget, and that a right-handed structure erupted from a predominantly left-handed corona during the X-class flare. Overall, we find that the use of different methods to estimate the (accumulated) coronal helicity may be necessary in order to draw a complete picture of an active-region corona, given the careful handling of identified data (preparation) issues, which otherwise would mislead the event analysis and interpretation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا