ترغب بنشر مسار تعليمي؟ اضغط هنا

CvxNet: Learnable Convex Decomposition

71   0   0.0 ( 0 )
 نشر من قبل Boyang Deng
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Any solid object can be decomposed into a collection of convex polytopes (in short, convexes). When a small number of convexes are used, such a decomposition can be thought of as a piece-wise approximation of the geometry. This decomposition is fundamental in computer graphics, where it provides one of the most common ways to approximate geometry, for example, in real-time physics simulation. A convex object also has the property of being simultaneously an explicit and implicit representation: one can interpret it explicitly as a mesh derived by computing the vertices of a convex hull, or implicitly as the collection of half-space constraints or support functions. Their implicit representation makes them particularly well suited for neural network training, as they abstract away from the topology of the geometry they need to represent. However, at testing time, convexes can also generate explicit representations -- polygonal meshes -- which can then be used in any downstream application. We introduce a network architecture to represent a low dimensional family of convexes. This family is automatically derived via an auto-encoding process. We investigate the applications of this architecture including automatic convex decomposition, image to 3D reconstruction, and part-based shape retrieval.

قيم البحث

اقرأ أيضاً

We present ShapeFlow, a flow-based model for learning a deformation space for entire classes of 3D shapes with large intra-class variations. ShapeFlow allows learning a multi-template deformation space that is agnostic to shape topology, yet preserve s fine geometric details. Different from a generative space where a latent vector is directly decoded into a shape, a deformation space decodes a vector into a continuous flow that can advect a source shape towards a target. Such a space naturally allows the disentanglement of geometric style (coming from the source) and structural pose (conforming to the target). We parametrize the deformation between geometries as a learned continuous flow field via a neural network and show that such deformations can be guaranteed to have desirable properties, such as be bijectivity, freedom from self-intersections, or volume preservation. We illustrate the effectiveness of this learned deformation space for various downstream applications, including shape generation via deformation, geometric style transfer, unsupervised learning of a consistent parameterization for entire classes of shapes, and shape interpolation.
Decomposing a scene into its shape, reflectance, and illumination is a challenging but important problem in computer vision and graphics. This problem is inherently more challenging when the illumination is not a single light source under laboratory conditions but is instead an unconstrained environmental illumination. Though recent work has shown that implicit representations can be used to model the radiance field of an object, most of these techniques only enable view synthesis and not relighting. Additionally, evaluating these radiance fields is resource and time-intensive. We propose a neural reflectance decomposition (NeRD) technique that uses physically-based rendering to decompose the scene into spatially varying BRDF material properties. In contrast to existing techniques, our input images can be captured under different illumination conditions. In addition, we also propose techniques to convert the learned reflectance volume into a relightable textured mesh enabling fast real-time rendering with novel illuminations. We demonstrate the potential of the proposed approach with experiments on both synthetic and real datasets, where we are able to obtain high-quality relightable 3D assets from image collections. The datasets and code is available on the project page: https://markboss.me/publication/2021-nerd/
The problems of shape classification and part segmentation from 3D point clouds have garnered increasing attention in the last few years. Both of these problems, however, suffer from relatively small training sets, creating the need for statistically efficient methods to learn 3D shape representations. In this paper, we investigate the use of Approximate Convex Decompositions (ACD) as a self-supervisory signal for label-efficient learning of point cloud representations. We show that using ACD to approximate ground truth segmentation provides excellent self-supervision for learning 3D point cloud representations that are highly effective on downstream tasks. We report improvements over the state-of-the-art for unsupervised representation learning on the ModelNet40 shape classification dataset and significant gains in few-shot part segmentation on the ShapeNetPart dataset.Code available at https://github.com/matheusgadelha/PointCloudLearningACD
Optimization algorithms for solving nonconvex inverse problem have attracted significant interests recently. However, existing methods require the nonconvex regularization to be smooth or simple to ensure convergence. In this paper, we propose a nove l gradient descent type algorithm, by leveraging the idea of residual learning and Nesterovs smoothing technique, to solve inverse problems consisting of general nonconvex and nonsmooth regularization with provable convergence. Moreover, we develop a neural network architecture intimating this algorithm to learn the nonlinear sparsity transformation adaptively from training data, which also inherits the convergence to accommodate the general nonconvex structure of this learned transformation. Numerical results demonstrate that the proposed network outperforms the state-of-the-art methods on a variety of different image reconstruction problems in terms of efficiency and accuracy.
With the increased deployment of face recognition systems in our daily lives, face presentation attack detection (PAD) is attracting a lot of attention and playing a key role in securing face recognition systems. Despite the great performance achieve d by the hand-crafted and deep learning based methods in intra-dataset evaluations, the performance drops when dealing with unseen scenarios. In this work, we propose a dual-stream convolution neural networks (CNNs) framework. One stream adapts four learnable frequency filters to learn features in the frequency domain, which are less influenced variations in sensors/illuminations. The other stream leverage the RGB images to complement the features of the frequency domain. Moreover, we propose a hierarchical attention module integration to join the information from the two streams at different stages by considering the nature of deep features in different layers of the CNN. The proposed method is evaluated in the intra-dataset and cross-dataset setups and the results demonstrates that our proposed approach enhances the generalizability in most experimental setups in comparison to state-of-the-art, including the methods designed explicitly for domain adaption/shift problem. We successfully prove the design of our proposed PAD solution in a step-wise ablation study that involves our proposed learnable frequency decomposition, our hierarchical attention module design, and the used loss function. Training codes and pre-trained models are publicly released.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا