ترغب بنشر مسار تعليمي؟ اضغط هنا

The rise and fall of an extraordinary Ca-rich transient -- The discovery of ATLAS19dqr/SN 2019bkc

66   0   0.0 ( 0 )
 نشر من قبل Simon Prentice
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work presents the observations and analysis of ATLAS19dqr/SN 2019bkc, an extraordinary rapidly evolving transient event located in an isolated environment, tens of kiloparsecs from any likely host. Its light curves rise to maximum light in $5-6$ d and then display a decline of $Delta m_{15} sim5$ mag. With such a pronounced decay, it has one of the most rapidly evolving light curves known for a stellar explosion. The early spectra show similarities to normal and `ultra-stripped type Ic SNe, but the early nebular phase spectra, which were reached just over two weeks after explosion, display prominent calcium lines, marking SN 2019bkc as a Ca-rich transient. The Ca emission lines at this phase show an unprecedented and unexplained blueshift of 10,000 -- 12,000 km/s. Modelling of the light curve and the early spectra suggests that the transient had a low ejecta mass of $0.2 - 0.4$ M$_odot$ and a low kinetic energy of $ (2-4)times 10^{50}$ erg, giving a specific kinetic energy $sim1$ [$10^{51}$ erg]/M$_odot$. The origin of this event cannot be unambiguously defined. While the abundance distribution used to model the spectra marginally favours a progenitor of white dwarf origin through the tentative identification of ArII, the specific kinetic energy, which is defined by the explosion mechanism, is found to be more similar to an ultra-stripped core-collapse events. SN 2019bkc adds to the diverse range of physical properties shown by Ca-rich events.

قيم البحث

اقرأ أيضاً

We present a Chandra observation of SN 2016hnk, a candidate Ca-rich gap transient. This observation was specifically designed to test whether or not this transient was the result of the tidal detonation of a white dwarf by an intermediate-mass black hole. Since we detect no X-ray emission 28 days after the discovery of the transient, as predicted from fall-back accretion, we rule out this model. Our upper limit of $sim 10$ M$_odot$ does not allow us to rule out a neutron star or stellar-mass black hole detonator due limits on the sensitivity of Chandra to soft X-rays and unconstrained variables tied to the structure of super-Eddington accretion disks. Together with other Chandra and multiwavelength observations, our analysis strongly argues against the intermediate-mass black hole tidal detonation scenario for Ca-rich gap transients more generally.
Spitzers final Infrared Array Camera (IRAC) observations of SN 1987A show the 3.6 and 4.5 $mu$m emission from the equatorial ring (ER) continues a period of steady decline. Deconvolution of the images reveals that the emission is dominated by the rin g, not the ejecta, and is brightest on the west side. Decomposition of the marginally resolved emission also confirms this, and shows that the west side of the ER has been brightening relative to the other portions of the ER. The infrared (IR) morphological changes resemble those seen in both the soft X-ray emission and the optical emission. The integrated ER light curves at 3.6 and 4.5 $mu$m are more similar to the optical light curves than the soft X-ray light curve, though differences would be expected if dust is responsible for this emission and its destruction is rapid. Future observations with the James Webb Space Telescope will continue to monitor the ER evolution, and will reveal the true spectrum and nature of the material responsible for the broadband emission at 3.6 and 4.5 $mu$m. The present observations also serendipitously reveal a nearby variable source, subsequently identified as a Be star, that has gone through a multi-year outburst during the course of these observations.
X-ray flashes (XRFs) are a class of gamma-ray bursts (GRBs) with the peak energy of the time-integrated spectrum, Ep, below 30 keV, whereas classical GRBs have Ep of a few hundreds keV. Apart from Ep and the lower luminosity, the properties of XRFs a re typical of the classical GRBs. Yet, the nature of XRFs and the differences from that of GRBs are not understood. In addition, there is no consensus on the interpretation of the shallow decay phase observed in most X-ray afterglows of both XRFs and GRBs. We examine in detail the case of XRF 080330 discovered by Swift at the redshift of 1.51. This burst is representative of the XRF class and exhibits an X-ray shallow decay. The rich and broadband (from NIR to UV) photometric data set we collected across this phase makes it an ideal candidate to test the off-axis jet interpretation proposed to explain both the softness of XRFs and the shallow decay phase. We present prompt gamma-ray, early and late IR/visible/UV and X-ray observations of the XRF 080330. We derive a SED from NIR to X-ray bands across the plateau phase with a power-law index of 0.79 +- 0.01 and negligible rest-frame dust extinction. The multi-wavelength evolution of the afterglow is achromatic from ~10^2 s out to ~8x10^4 s. We describe the temporal evolution of the multi-wavelength afterglow within the context of the standard afterglow model and show that a single-component jet viewed off-axis explains the observations (abriged).
We present observations and modeling of SN 2016hnk, a Ca-rich supernova (SN) that is consistent with being the result of a He-shell double-detonation explosion of a C/O white dwarf. We find that SN 2016hnk is intrinsically red relative to typical the rmonuclear SNe and has a relatively low peak luminosity ($M_B = -15.4$ mag), setting it apart from low-luminosity Type Ia supernovae (SNe Ia). SN 2016hnk has a fast-rising light curve that is consistent with other Ca-rich transients ($t_r = 15$ d). We determine that SN 2016hnk produced $0.03 pm 0.01 M_{odot}$ of ${}^{56}textrm{Ni}$ and $0.9 pm 0.3 M_{odot}$ of ejecta. The photospheric spectra show strong, high-velocity Ca II absorption and significant line blanketing at $lambda < 5000$ Angstroms, making it distinct from typical (SN 2005E-like) Ca-rich SNe. SN 2016hnk is remarkably similar to SN 2018byg, which was modeled as a He-shell double-detonation explosion. We demonstrate that the spectra and light curves of SN 2016hnk are well modeled by the detonation of a $0.02 M_{odot}$ helium shell on the surface of a $0.85 M_{odot}$ C/O white dwarf. This analysis highlights the second observed case of a He-shell double-detonation and suggests a specific thermonuclear explosion that is physically distinct from SNe that are defined simply by their low luminosities and strong [Ca II] emission.
The Gamma Ray Burst (GRB) 180720B is one of the brightest events detected by the Fermi satellite and the first GRB detected by the H.E.S.S. telescope above 100 GeV. We analyse the Fermi (GBM and LAT) and Swift (XRT and BAT) data and describe the evol ution of the burst spectral energy distribution in the 0.5 keV - 10 GeV energy range over the first 500 seconds of emission. We reveal a smooth transition from the prompt phase, dominated by synchrotron emission in a moderately fast cooling regime, to the afterglow phase whose emission has been observed from the radio to the GeV energy range. The LAT (0.1 - 100 GeV) light curve initially rises ($F_{rm LAT}propto t^{2.4}$), peaks at $sim$78 s, and falls steeply ($F_{rm LAT}propto t^{-2.2}$) afterwards. The peak, which we interpret as the onset of the fireball deceleration, allows us to estimate the bulk Lorentz factor $Gamma_{0}sim 150 (300)$ under the assumption of a wind-like (homogeneous) circum-burst medium density. We derive a flux upper limit in the LAT energy range at the time of H.E.S.S. detection, but this does not allow us to unveil the nature of the high energy component observed by H.E.S.S. We fit the prompt spectrum with a physical model of synchrotron emission from a non-thermal population of electrons. The 0 - 35 s spectrum after its $E F(E)$ peak (at 1 - 2 MeV) is a steep power law extending to hundreds of MeV. We derive a steep slope of the injected electron energy distribution $N(gamma)propto gamma^{-5}$. Our fit parameters point towards a very low magnetic field ($Bsim 1 $ G) in the emission region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا