ﻻ يوجد ملخص باللغة العربية
In this paper we explore the use of results on forward particle production at the LHC to constrain nuclear Parton Density Functions (nPDFs). The case study here is based on a possible future measurement of forward photon production with the Forward Calorimeter that is currently under discussion as an upgrade of the ALICE experiment. As a starting point, we use the recent nNNPDF 1.0 nuclear PDFs, which have been determined using fixed target neutral-current DIS data, which constrain the gluon density at x > $10^{-2}$. The Bayesian reweighting technique is used to include the constraints from the future measurement.
We demonstrate that underlying assumptions concerning the structure of constituent parton Fock states in hadrons make a strong impact on the predictions of hadronic interaction models for forward hadron spectra and for long-range correlations between
Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton dist
Probes for the small-x parton densities and predicted effects of gluon saturation are discussed. At very low x and intermediate Q, only results on hadronic observables at the LHC are available, which do not provide unambiguous information. It is show
We compute the leading order (LO) $qgto q gamma$ and next-to-leading order (NLO) $ggto q{bar q} gamma$ contributions to inclusive photon production in proton-proton (p+p) collisions at the LHC. These channels provide the dominant contribution at LO a
Next-to-leading order predictions matched to parton showers are compared with recent ATLAS data on inclusive photon production and CMS data on associated photon and jet production in pp and pPb collisions at different centre-of-mass energies of the L