ﻻ يوجد ملخص باللغة العربية
We report charge-transfer up to a single electron per interfacial unit cell across non-polar heterointerfaces from the Mott insulator LaTiO3 to the charge transfer insulator LaCoO3. In high-quality bi- and tri-layer systems grown using pulsed laser deposition, soft X-ray absorption, dichroism and STEM-EELS are used to probe the cobalt 3d-electron count and provide an element-specific investigation of the magnetic properties. The experiments prove a deterministically-tunable charge transfer process acting in the LaCoO3 within three unit cells of the heterointerface, able to generate full conversion to 3d7 divalent Co, which displays a paramagnetic ground state. The number of LaTiO3 / LaCoO3 interfaces, the thickness of an additional break layer between the LaTiO3 and LaCoO3, and the LaCoO3 film thickness itself in tri-layers provide a trio of sensitive control knobs for the charge transfer process, illustrating the efficacy of O2p-band alignment as a guiding principle for property design in complex oxide heterointerfaces.
Controlling interfacial interactions in magnetic/topological insulator heterostructures is a major challenge for the emergence of novel spin-dependent electronic phenomena. As for any rational design of heterostructures that rely on proximity effects
Perovskite stability is of the core importance and difficulty in current research and application of perovskite solar cells. Nevertheless, over the past century, the formability and stability of perovskite still relied on simplified factor based on h
The interfacial behavior of quantum materials leads to emergent phenomena such as two dimensional electron gases, quantum phase transitions, and metastable functional phases. Probes for in situ and real time surface sensitive characterization are cri
In this work we show the presence of a magnetoelectric coupling in silicon-nitride gated Pt/Co/Pt heterostructures using X-ray photoemission electron microscopy (XPEEM). We observe a change in magnetic anisotropy in the form of domain wall nucleation
Antiferromagnetic thin films typically exhibit a multi-domain state, and control of the antiferromagnetic Neel vector is challenging as antiferromagnetic materials are robust to magnetic perturbations. By relying on anisotropic in-plane strain engine