ﻻ يوجد ملخص باللغة العربية
Perovskite stability is of the core importance and difficulty in current research and application of perovskite solar cells. Nevertheless, over the past century, the formability and stability of perovskite still relied on simplified factor based on human knowledge, such as the commonly used tolerance factor t. Combining machine learning (ML) with first-principles density functional calculations, we proposed a strategy to firstly calculate the decomposition energies, considered to be closely related to thermodynamic stability, of 354 kinds halide perovskites, establish the machine learning relationship between decomposition energy and compositional ionic radius and investigate the stabilities of 14,190 halide double perovskites. The ML-predicted results enable us to rediscover a series of stable rare earth metal halide perovskites (up to ~1000 kinds), indicating the generalization of this model and further provide elemental and concentration suggestion for improving the stability of mixed perovskite.
The organic-inorganic hybrid perovskite CH3NH3PbI3 has attracted significant interest for its high performance in converting solar light into electrical power with an efficiency exceeding 20%. Unfortunately, chemical stability is one major challenge
We report charge-transfer up to a single electron per interfacial unit cell across non-polar heterointerfaces from the Mott insulator LaTiO3 to the charge transfer insulator LaCoO3. In high-quality bi- and tri-layer systems grown using pulsed laser d
The performance of organometallic perovskite solar cells has rapidly surpassed that of both conventional dye-sensitised and organic photovoltaics. High power conversion efficiency can be realised in both mesoporous and thin-film device architectures.
Metal halide perovskites have recently emerged as promising materials for the next generation of optoelectronic devices owing to their remarkable intrinsic properties. In the growth of perovskite crystals, the substrates are essential and play a vita
Methylammonium lead iodide perovskites are considered direct bandgap semiconductors. Here we show that in fact they present a weakly indirect bandgap 60 meV below the direct bandgap transition. This is a consequence of spin-orbit coupling resulting i