ترغب بنشر مسار تعليمي؟ اضغط هنا

Determination of the electric field in highly-irradiated silicon sensors using edge-TCT measurements

74   0   0.0 ( 0 )
 نشر من قبل Robert Klanner
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A method is presented which allows to obtain the position-dependent electric field and charge density by fits to velocity profiles from edge-TCT data from silicon strip-detectors. The validity and the limitations of the method are investigated by simulations of non-irradiated $n^+p$ pad sensors and by the analysis of edge-TCT data from non-irradiated $n^+p$ strip-detectors. The method is then used to determine the position dependent electric field and charge density in $n^+p$ strip detectors irradiated by reactor neutrons to fluences between 1 and $10 times 10^{15}$ cm$^{-2}$ for forward-bias voltages between 25 V and up to 550 V and for reverse-bias voltages between 50 V and 800 V. In all cases the velocity profiles are well described. The electric fields and charge densities determined provide quantitative insights into the effects of radiation damage for silicon sensors by reactor neutrons.

قيم البحث

اقرأ أيضاً

A new method for the extraction of the electric field in the bulk of heavily irradiated silicon pixel sensors is presented. It is based on the measurement of the Lorentz deflection and mobility of electrons as a function of depth. The measurements we re made at the CERN H2 beam line, with the beam at a shallow angle with respect to the pixel sensor surface. The extracted electric field is used to simulate the charge collection and the Lorentz deflection in the pixel sensor. The simulated charge collection and the Lorentz deflection is in good agreement with the measurements both for non-irradiated and irradiated up to 1E15 neq/cm2 sensors.
We show that doubly peaked electric fields are necessary to describe grazing-angle charge collection measurements of irradiated silicon pixel sensors. A model of irradiated silicon based upon two defect levels with opposite charge states and the trap ping of charge carriers can be tuned to produce a good description of the measured charge collection profiles in the fluence range from 0.5x10^{14} Neq/cm^2 to 5.9x10^{14} Neq/cm^2. The model correctly predicts the variation in the profiles as the temperature is changed from -10C to -25C. The measured charge collection profiles are inconsistent with the linearly-varying electric fields predicted by the usual description based upon a uniform effective doping density. This observation calls into question the practice of using effective doping densities to characterize irradiated silicon.
The standard technique to electrically isolate the $n^+$ implants of segmented silicon sensors fabricated on high-ohmic $p$-type silicon are $p^+$-implants. Although the knowledge of the $p^+$-implant dose and of the doping profile is highly relevant for the understanding and optimisation of sensors, this information is usually not available from the vendors, and methods to obtain it are highly welcome. The paper presents methods to obtain this information from circular MOSFETs fabricated as test structures on the same wafer as the sensors. Two circular MOSFETs, one with and one without a $p^+$-implant under the gate, are used for this study. They were produced on Magnetic Czochralski silicon doped with $approx 3.5 times 10^{12}$ cm$^{-2}$ of boron and $langle 1 0 0 , rangle$ crystal orientation. The drain-source current as function of gate voltage for different back-side voltages is measured at a drain-source voltage of 50 mV in the linear MOSFET region, and the values of threshold voltage and mobility extracted using the standard MOSFET formulae. To determine the bulk doping, the implantation dose and profile from the data, two methods are used, which give compatible results. The doping profile, which varies between $3.5 times 10^{12}$ cm$^{-3}$ and $2 times 10^{15}$ cm$^{-3}$ for the MOSFET with $p^+$-implant, is determined down to a distance of a fraction of a $mu $m from the Si-SiO$_2$ interface. The method of extracting the doping profiles is verified using data from a TCAD simulation of the two MOSFETs. The details of the methods and of the problems encountered are discussed.
In this paper we discuss the measurement of charge collection in irradiated silicon pixel sensors and the comparison with a detailed simulation. The simulation implements a model of radiation damage by including two defect levels with opposite charge states and trapping of charge carriers. The modeling proves that a doubly peaked electric field generated by the two defect levels is necessary to describe the data and excludes a description based on acceptor defects uniformly distributed across the sensor bulk. In addition, the dependence of trap concentrations upon fluence is established by comparing the measured and simulated profiles at several fluences and bias voltages.
56 - L. Poley , A. J. Blue , C. Buttar 2021
A significant aspect of the Phase-II Upgrade of the ATLAS detector is the replacement of the current Inner Detector with the ATLAS Inner Tracker (ITk). The ATLAS ITk is an all-silicon detector consisting of a pixel tracker and a strip tracker. Sensor s for the ITk strip tracker have been developed to withstand the high radiation environment in the ATLAS detector after the High Luminosity Upgrade of the Large Hadron Collider at CERN, which will significantly increase the rate of particle collisions and resulting particle tracks. During their operation in the ATLAS detector, sensors for the ITk strip tracker are expected to accumulate fluences up to 1.6 x 10^15 n_eq/cm^2 (including a safety factor of 1.5), which will significantly affect their performance. One characteristic of interest for highly irradiated sensors is the shape and homogeneity of the electric field inside its active area. For the results presented here, diodes with edge structures similar to full size ATLAS sensors were irradiated up to fluences comparable to those in the ATLAS ITk strip tracker and their electric fields mapped using a micro-focused X-ray beam (beam diameter 2x3 {mu}m^2). This study shows the extension and shape of the electric field inside highly irradiated diodes over a range of applied bias voltages. Additionally, measurements of the outline of the depleted sensor areas allow a comparison of the measured leakage current for different fluences with expectations for the corresponding active areas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا