ﻻ يوجد ملخص باللغة العربية
We report the discovery of a planet in a binary that was discovered from the analysis of the microlensing event OGLE-2018-BLG-1700. We identify the triple nature of the lens from the fact that the complex anomaly pattern can be decomposed into two parts produced by two binary-lens events, in which one binary pair has a very low mass ratio of $sim 0.01$ between the lens components and the other pair has a mass ratio of $sim 0.3$. We find two sets of degenerate solutions, in which one solution has a projected separation between the primary and its stellar companion less than the angular Einstein radius $thetae$ (close solution), while the other solution has a separation greater than $thetae$ (wide solution). From the Bayesian analysis with the constraints of the event time scale and angular Einstein radius together with the location of the source lying in the far disk behind the bulge, we find that the planet is a super-Jupiter with a mass of $4.4^{+3.0}_{-2.0}~M_{rm J}$ and the stellar binary components are early and late M-type dwarfs with masses $0.42^{+0.29}_{-0.19}~M_odot$ and $0.12^{+0.08}_{-0.05}~M_odot$, respectively, and the planetary system is located at a distance of $D_{rm L}=7.6^{+1.2}_{-0.9}~{rm kpc}$. The planet is a circumstellar planet according to the wide solution, while it is a circumbinary planet according to the close solution. The projected primary-planet separation is $2.8^{+3.2}_{-2.5}~{rm au}$ commonly for the close and wide solutions, but the primary-secondary binary separation of the close solution, $0.75^{+0.87}_{-0.66}~{rm au}$, is widely different from the separation, $10.5^{+12.1}_{-9.2}~{rm au}$, of the wide solution.
We present the analysis of OGLE-2016-BLG-0613, for which the lensing light curve appears to be that of a typical binary-lens event with two caustic spikes but with a discontinuous feature on the trough between the spikes. We find that the discontinuo
We present the analyses of two microlensing events, OGLE-2018-BLG-0567 and OGLE-2018-BLG-0962. In both events, the short-lasting anomalies were densely and continuously covered by two high-cadence surveys. The light-curve modeling indicates that the
We present the analysis of microlensing event OGLE-2006-BLG-284, which has a lens system that consists of two stars and a gas giant planet with a mass ratio of $q_p = (1.26pm 0.19) times 10^{-3}$ to the primary. The mass ratio of the two stars is $q_
We report the analysis of planetary microlensing event OGLE-2018-BLG-1185, which was observed by a large number of ground-based telescopes and by the $Spitzer$ Space Telescope. The ground-based light curve indicates a low planet-host star mass ratio
We report the analysis of OGLE-2019-BLG-0960, which contains the smallest mass-ratio microlensing planet found to date (q = 1.2--1.6 x 10^{-5} at 1-sigma). Although there is substantial uncertainty in the satellite parallax measured by Spitzer, the m