ترغب بنشر مسار تعليمي؟ اضغط هنا

OGLE-2016-BLG-0613LABb: A Microlensing Planet in a Binary System

116   0   0.0 ( 0 )
 نشر من قبل Cheongho Han
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the analysis of OGLE-2016-BLG-0613, for which the lensing light curve appears to be that of a typical binary-lens event with two caustic spikes but with a discontinuous feature on the trough between the spikes. We find that the discontinuous feature was produced by a planetary companion to the binary lens. We find 4 degenerate triple-lens solution classes, each composed of a pair of solutions according to the well-known wide/close planetary degeneracy. One of these solution classes is excluded due to its relatively poor fit. For the remaining three pairs of solutions, the most-likely primary mass is about $M_1sim 0.7,M_odot$ while the planet is a super-Jupiter. In all cases the system lies in the Galactic disk, about half-way toward the Galactic bulge. However, in one of these three solution classes, the secondary of the binary system is a low-mass brown dwarf, with relative mass ratios (1 : 0.03 : 0.003), while in the two others the masses of the binary components are comparable. These two possibilities can be distinguished in about 2024 when the measured lens-source relative proper motion will permit separate resolution of the lens and source.

قيم البحث

اقرأ أيضاً

We report the discovery of a planet in a binary that was discovered from the analysis of the microlensing event OGLE-2018-BLG-1700. We identify the triple nature of the lens from the fact that the complex anomaly pattern can be decomposed into two pa rts produced by two binary-lens events, in which one binary pair has a very low mass ratio of $sim 0.01$ between the lens components and the other pair has a mass ratio of $sim 0.3$. We find two sets of degenerate solutions, in which one solution has a projected separation between the primary and its stellar companion less than the angular Einstein radius $thetae$ (close solution), while the other solution has a separation greater than $thetae$ (wide solution). From the Bayesian analysis with the constraints of the event time scale and angular Einstein radius together with the location of the source lying in the far disk behind the bulge, we find that the planet is a super-Jupiter with a mass of $4.4^{+3.0}_{-2.0}~M_{rm J}$ and the stellar binary components are early and late M-type dwarfs with masses $0.42^{+0.29}_{-0.19}~M_odot$ and $0.12^{+0.08}_{-0.05}~M_odot$, respectively, and the planetary system is located at a distance of $D_{rm L}=7.6^{+1.2}_{-0.9}~{rm kpc}$. The planet is a circumstellar planet according to the wide solution, while it is a circumbinary planet according to the close solution. The projected primary-planet separation is $2.8^{+3.2}_{-2.5}~{rm au}$ commonly for the close and wide solutions, but the primary-secondary binary separation of the close solution, $0.75^{+0.87}_{-0.66}~{rm au}$, is widely different from the separation, $10.5^{+12.1}_{-9.2}~{rm au}$, of the wide solution.
69 - C. Han , A. Udalski , T. Sumi 2017
We report the discovery of a binary composed of two brown dwarfs, based on the analysis of the microlensing event OGLE-2016-BLG-1469. Thanks to detection of both finite-source and microlens-parallax effects, we are able to measure both the masses $M_ 1sim 0.05 M_odot$, $M_2sim 0.01 M_odot$, and distance $D_{rm L} sim 4.5$ kpc, as well as the projected separation $a_perp sim 0.33$ au. This is the third brown-dwarf binary detected using the microlensing method, demonstrating the usefulness of microlensing in detecting field brown-dwarf binaries with separations less than 1 au.
We present the analysis of microlensing event OGLE-2006-BLG-284, which has a lens system that consists of two stars and a gas giant planet with a mass ratio of $q_p = (1.26pm 0.19) times 10^{-3}$ to the primary. The mass ratio of the two stars is $q_ s = 0.289pm 0.011$, and their projected separation is $s_s = 2.1pm 0.7,$AU, while the projected separation of the planet from the primary is $s_p = 2.2pm 0.8,$AU. For this lens system to have stable orbits, the three-dimensional separation of either the primary and secondary stars or the planet and primary star must be much larger than that these projected separations. Since we do not know which is the case, the system could include either a circumbinary or a circumstellar planet. Because there is no measurement of the microlensing parallax effect or lens system brightness, we can only make a rough Bayesian estimate of the lens system masses and brightness. We find host star and planet masses of $M_{L1} = 0.35^{+0.30}_{-0.20},M_odot$, $M_{L2} = 0.10^{+0.09}_{-0.06},M_odot$, and $m_p = 144^{+126}_{-82},M_oplus$, and the $K$-band magnitude of the combined brightness of the host stars is $K_L = 19.7^{+0.7}_{-1.0}$. The separation between the lens and source system will be $sim 90,$mas in mid-2020, so it should be possible to detect the host system with follow-up adaptive optics or Hubble Space Telescope observations.
KMT-2016-BLG-2605, with planet-host mass ratio $q=0.012pm 0.001$, has the shortest Einstein timescale, $t_e = 3.41pm 0.13,$days, of any planetary microlensing event to date. This prompts us to examine the full sample of 7 short ($t_e<7,$day) planetar y events with good $q$ measurements. We find that six have clustered Einstein radii $theta_e = 115pm 20,muas$ and lens-source relative proper motions $mu_relsimeq 9.5pm 2.5,masyr$. For the seventh, these two quantities could not be measured. These distributions are consistent with a Galactic-bulge population of very low-mass (VLM) hosts near the hydrogen-burning limit. This conjecture could be verified by imaging at first adaptive-optics light on next-generation (30m) telescopes. Based on a preliminary assessment of the sample, planetary companions (i.e., below the deuterium-burning limit) are divided into genuine planets, formed in their disks by core accretion, and very low-mass brown dwarfs, which form like stars. We discuss techniques for expanding the sample, which include taking account of the peculiar anomaly dominated morphology of the KMT-2016-BLG-2605 light curve.
We report the analysis of OGLE-2019-BLG-0960, which contains the smallest mass-ratio microlensing planet found to date (q = 1.2--1.6 x 10^{-5} at 1-sigma). Although there is substantial uncertainty in the satellite parallax measured by Spitzer, the m easurement of the annual parallax effect combined with the finite source effect allows us to determine the mass of the host star (M_L = 0.3--0.6 M_Sun), the mass of its planet (m_p = 1.4--3.1 M_Earth), the projected separation between the host and planet (a_perp = 1.2--2.3 au), and the distance to the lens system (D_L = 0.6--1.2 kpc). The lens is plausibly the blend, which could be checked with adaptive optics observations. As the smallest planet clearly below the break in the mass-ratio function (Suzuki et al. 2016; Jung et al. 2019), it demonstrates that current experiments are powerful enough to robustly measure the slope of the mass-ratio function below that break. We find that the cross-section for detecting small planets is maximized for planets with separations just outside of the boundary for resonant caustics and that sensitivity to such planets can be maximized by intensively monitoring events whenever they are magnified by a factor A > 5. Finally, an empirical investigation demonstrates that most planets showing a degeneracy between (s > 1) and (s < 1) solutions are not in the regime (|log s| >> 0) for which the close/wide degeneracy was derived. This investigation suggests a link between the close/wide and inner/outer degeneracies and also that the symmetry in the lens equation goes much deeper than symmetries uncovered for the limiting cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا