ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalable Structure Learning of Continuous-Time Bayesian Networks from Incomplete Data

83   0   0.0 ( 0 )
 نشر من قبل Dominik Linzner
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Continuous-time Bayesian Networks (CTBNs) represent a compact yet powerful framework for understanding multivariate time-series data. Given complete data, parameters and structure can be estimated efficiently in closed-form. However, if data is incomplete, the latent states of the CTBN have to be estimated by laboriously simulating the intractable dynamics of the assumed CTBN. This is a problem, especially for structure learning tasks, where this has to be done for each element of a super-exponentially growing set of possible structures. In order to circumvent this notorious bottleneck, we develop a novel gradient-based approach to structure learning. Instead of sampling and scoring all possible structures individually, we assume the generator of the CTBN to be composed as a mixture of generators stemming from different structures. In this framework, structure learning can be performed via a gradient-based optimization of mixture weights. We combine this approach with a new variational method that allows for a closed-form calculation of this mixture marginal likelihood. We show the scalability of our method by learning structures of previously inaccessible sizes from synthetic and real-world data.



قيم البحث

اقرأ أيضاً

304 - Diane Oyen , Terran Lane 2013
Bayesian network structure learning algorithms with limited data are being used in domains such as systems biology and neuroscience to gain insight into the underlying processes that produce observed data. Learning reliable networks from limited data is difficult, therefore transfer learning can improve the robustness of learned networks by leveraging data from related tasks. Existing transfer learning algorithms for Bayesian network structure learning give a single maximum a posteriori estimate of network models. Yet, many other models may be equally likely, and so a more informative result is provided by Bayesian structure discovery. Bayesian structure discovery algorithms estimate posterior probabilities of structural features, such as edges. We present transfer learning for Bayesian structure discovery which allows us to explore the shared and unique structural features among related tasks. Efficient computation requires that our transfer learning objective factors into local calculations, which we prove is given by a broad class of transfer biases. Theoretically, we show the efficiency of our approach. Empirically, we show that compared to single task learning, transfer learning is better able to positively identify true edges. We apply the method to whole-brain neuroimaging data.
In federated learning problems, data is scattered across different servers and exchanging or pooling it is often impractical or prohibited. We develop a Bayesian nonparametric framework for federated learning with neural networks. Each data server is assumed to provide local neural network weights, which are modeled through our framework. We then develop an inference approach that allows us to synthesize a more expressive global network without additional supervision, data pooling and with as few as a single communication round. We then demonstrate the efficacy of our approach on federated learning problems simulated from two popular image classification datasets.
Most existing algorithms for dictionary learning assume that all entries of the (high-dimensional) input data are fully observed. However, in several practical applications (such as hyper-spectral imaging or blood glucose monitoring), only an incompl ete fraction of the data entries may be available. For incomplete settings, no provably correct and polynomial-time algorithm has been reported in the dictionary learning literature. In this paper, we provide provable approaches for learning - from incomplete samples - a family of dictionaries whose atoms have sufficiently spread-out mass. First, we propose a descent-style iterative algorithm that linearly converges to the true dictionary when provided a sufficiently coarse initial estimate. Second, we propose an initialization algorithm that utilizes a small number of extra fully observed samples to produce such a coarse initial estimate. Finally, we theoretically analyze their performance and provide asymptotic statistical and computational guarantees.
In this paper, we establish the ordinary differential equation (ODE) that underlies the training dynamics of Model-Agnostic Meta-Learning (MAML). Our continuous-time limit view of the process eliminates the influence of the manually chosen step size of gradient descent and includes the existing gradient descent training algorithm as a special case that results from a specific discretization. We show that the MAML ODE enjoys a linear convergence rate to an approximate stationary point of the MAML loss function for strongly convex task losses, even when the corresponding MAML loss is non-convex. Moreover, through the analysis of the MAML ODE, we propose a new BI-MAML training algorithm that significantly reduces the computational burden associated with existing MAML training methods. To complement our theoretical findings, we perform empirical experiments to showcase the superiority of our proposed methods with respect to the existing work.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا