ﻻ يوجد ملخص باللغة العربية
The broadband spectrum from the 2013 December 20 $gamma$-ray flare from 3C~279 is analyzed with our previously-developed one-zone blazar jet model. We are able to reproduce two SEDs, a quiescent and flaring state, the latter of which had an unusual SED, with hard $gamma$-ray spectrum, high Compton dominance, and short duration. Our model suggests that there is insufficient energy for a comparable X-ray flare to have occurred simultaneously, which is an important constraint given the lack of X-ray data. We show that first- and second-order Fermi acceleration are sufficient to explain the flare, and that magnetic reconnection is not needed. The model includes particle acceleration, escape, and adiabatic and radiative energy losses, including the full Compton cross-section, and emission from the synchrotron, synchrotron self-Compton, and external Compton processes. We provide a simple analytic approximation to the electron distribution solution to the transport equation that may be useful for simplified modeling in the future.
Over the past few years, several occasions of large, continuous rotations of the electric vector position angle (EVPA) of linearly polarized optical emission from blazars have been reported. These events are often coincident with high energy gamma-ra
Blazars radiate from radio through gamma-ray frequencies thereby being ideal targets for multifrequency studies. Such studies allow constraining the properties of the emitting jet. 3C 279 is among the most notable blazars and therefore subject to ext
During the month of December, 2009 the blazar 3C 454.3 became the brightest gamma-ray source in the sky, reaching a peak flux F ~2000E-8 ph/cm2/s for E > 100 MeV. Starting in November, 2009 intensive multifrequency campaigns monitored the 3C 454 gamm
The flat spectrum radio quasar 3C 279 is a known $gamma$-ray variable source that has recently exhibited minute-scale variability at energies $>100$ MeV. One-zone leptonic models for blazar emission are severely constrained by the short timescale var
We report first observational results of multifrequency campaigns on the prominent Virgo blazars 3C 273 and 3C 279 which were carried out in January and February 1999. Both blazars are detected from radio to gamma-ray energies. We present the measure