ﻻ يوجد ملخص باللغة العربية
During the month of December, 2009 the blazar 3C 454.3 became the brightest gamma-ray source in the sky, reaching a peak flux F ~2000E-8 ph/cm2/s for E > 100 MeV. Starting in November, 2009 intensive multifrequency campaigns monitored the 3C 454 gamma-ray outburst. Here we report the results of a 2-month campaign involving AGILE, INTEGRAL, Swift/XRT, Swift/BAT, RossiXTE for the high-energy observations, and Swift/UVOT, KANATA, GRT, REM for the near-IR/optical/UV data. The GASP/WEBT provided radio and additional optical data. We detected a long-term active emission phase lasting ~1 month at all wavelengths: in the gamma-ray band, peak emission was reached on December 2-3, 2009. Remarkably, this gamma-ray super-flare was not accompanied by correspondingly intense emission in the optical/UV band that reached a level substantially lower than the previous observations in 2007-2008. The lack of strong simultaneous optical brightening during the super-flare and the determination of the broad-band spectral evolution severely constrain the theoretical modelling. We find that the pre- and post-flare broad-band behavior can be explained by a one-zone model involving SSC plus external Compton emission from an accretion disk and a broad-line region. However, the spectra of the Dec. 2-3, 2009 super-flare and of the secondary peak emission on Dec. 9, 2009 cannot be satisfactorily modelled by a simple one-zone model. An additional particle component is most likely active during these states.
We report on the second AGILE multiwavelength campaign of the blazar 3C 454.3 during the first half of December 2007. This campaign involved AGILE, Spitzer, Swift,Suzaku,the WEBT consortium,the REM and MITSuME telescopes,offering a broad band coverag
We present the gamma-ray data of the extraordinary flaring activity above 100 MeV from the flat spectrum radio quasar 3C 454.3 detected by AGILE during the month of December 2009. 3C 454.3, that has been among the most active blazars of the FSRQ type
We describe the optical spectropolarimetric monitoring program at Steward Observatory centered around gamma-ray-bright blazars and the LAT Monitored Source List planned for Fermi Cycles 2-4. The large number of measurements made during Cycle 1 of the
Recent detection of suborbital gamma-ray variability of Flat Spectrum Radio Quasar (FSRQ) 3C 279 by Fermi Large Area Telescope (LAT) is in severe conflict with established models of blazar emission. This paper presents the results of suborbital analy
We report the first blazar detection by the AGILE satellite. AGILE detected 3C 454.3 during a period of strongly enhanced optical emission in July 2007. AGILE observed the source with a dedicated repointing during the period 2007 July 24-30 with its