ترغب بنشر مسار تعليمي؟ اضغط هنا

The December 2009 gamma-ray flare of 3C 454.3: the multifrequency campaign

140   0   0.0 ( 0 )
 نشر من قبل Luigi Pacciani
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

During the month of December, 2009 the blazar 3C 454.3 became the brightest gamma-ray source in the sky, reaching a peak flux F ~2000E-8 ph/cm2/s for E > 100 MeV. Starting in November, 2009 intensive multifrequency campaigns monitored the 3C 454 gamma-ray outburst. Here we report the results of a 2-month campaign involving AGILE, INTEGRAL, Swift/XRT, Swift/BAT, RossiXTE for the high-energy observations, and Swift/UVOT, KANATA, GRT, REM for the near-IR/optical/UV data. The GASP/WEBT provided radio and additional optical data. We detected a long-term active emission phase lasting ~1 month at all wavelengths: in the gamma-ray band, peak emission was reached on December 2-3, 2009. Remarkably, this gamma-ray super-flare was not accompanied by correspondingly intense emission in the optical/UV band that reached a level substantially lower than the previous observations in 2007-2008. The lack of strong simultaneous optical brightening during the super-flare and the determination of the broad-band spectral evolution severely constrain the theoretical modelling. We find that the pre- and post-flare broad-band behavior can be explained by a one-zone model involving SSC plus external Compton emission from an accretion disk and a broad-line region. However, the spectra of the Dec. 2-3, 2009 super-flare and of the secondary peak emission on Dec. 9, 2009 cannot be satisfactorily modelled by a simple one-zone model. An additional particle component is most likely active during these states.


قيم البحث

اقرأ أيضاً

We report on the second AGILE multiwavelength campaign of the blazar 3C 454.3 during the first half of December 2007. This campaign involved AGILE, Spitzer, Swift,Suzaku,the WEBT consortium,the REM and MITSuME telescopes,offering a broad band coverag e that allowed for a simultaneous sampling of the synchrotron and inverse Compton (IC) emissions.The 2-week AGILE monitoring was accompanied by radio to optical monitoring by WEBT and REM and by sparse observations in mid-Infrared and soft/hard X-ray energy bands performed by means of Target of Opportunity observations by Spitzer, Swift and Suzaku, respectively.The source was detected with an average flux of~250x10^{-8}ph cm^-2s^-1 above 100 MeV,typical of its flaring states.The simultaneous optical and gamma-ray monitoring allowed us to study the time-lag associated with the variability in the two energy bands, resulting in a possible ~1-day delay of the gamma-ray emission with respect to the optical one. From the simultaneous optical and gamma-ray fast flare detected on December 12, we can constrain the delay between the gamma-ray and optical emissions within 12 hours. Moreover, we obtain three Spectral Energy Distributions (SEDs) with simultaneous data for 2007 December 5, 13, 15, characterized by the widest multifrequency coverage. We found that a model with an external Compton on seed photons by a standard disk and reprocessed by the Broad Line Regions does not describe in a satisfactory way the SEDs of 2007 December 5, 13 and 15. An additional contribution, possibly from the hot corona with T=10^6 K surrounding the jet, is required to account simultaneously for the softness of the synchrotron and the hardness of the inverse Compton emissions during those epochs.
We present the gamma-ray data of the extraordinary flaring activity above 100 MeV from the flat spectrum radio quasar 3C 454.3 detected by AGILE during the month of December 2009. 3C 454.3, that has been among the most active blazars of the FSRQ type since 2007, was detected in the gamma-ray range with a progressively rising flux since November 10, 2009. The gamma-ray flux reached a value comparable with that of the Vela pulsar on December 2, 2009. Remarkably, between December 2 and 3, 2009 the source more than doubled its gamma-ray emission and became the brightest gamma-ray source in the sky with a peak flux of F_{gamma,p} = (2000 pm 400) x 10^-8 ph cm^-2 s^-1 for a 1-day integration above 100 MeV. The gamma-ray intensity decreased in the following days with the source flux remaining at large values near F simeq (1000 pm 200) x 10^-8 ph cm^-2 s^-1 for more than a week. This exceptional gamma-ray flare dissipated among the largest ever detected intrinsic radiated power in gamma-rays above 100 MeV (L_{gamma, source, peak} simeq 3 x 10^46 erg s^-1, for a relativistic Doppler factor of {delta} simeq 30). The total isotropic irradiated energy of the month-long episode in the range 100 MeV - 3 GeV is E_{gamma,iso} simeq 10^56 erg. We report the intensity and spectral evolution of the gamma-ray emission across the flaring episode. We briefly discuss the important theoretical implications of our detection.
125 - P. S. Smith 2009
We describe the optical spectropolarimetric monitoring program at Steward Observatory centered around gamma-ray-bright blazars and the LAT Monitored Source List planned for Fermi Cycles 2-4. The large number of measurements made during Cycle 1 of the Fermi mission are available to the research community and the data products are summarized (see http://james.as.arizona.edu/~psmith/Fermi). The optical data include spectropolarimetry at a resolution of ~20 A, broad-band polarization and flux measurements, and flux-calibrated spectra spanning 4000-7600 A. These data provide a comprehensive view of the optical variability of an important sample of objects during the Fermi Era. In addition to broad-band flux and linear polarization monitoring, the spectra allow for the tracking of changes to the spectral index of the synchrotron continuum, importance of non-synchrotron emission features, and how and when the polarization varies with wavelength, an important clue as to the structure of the emission region or the identification of multiple nonthermal components. As an illustration, we present observations of 3C 454.3 obtained in 2009 September during an exceptionally bright gamma-ray flare. The blazar was optically bright during the flare, but except for a few short periods, it showed surprisingly low polarization (P < 5%). Opportunities exist within the Fermi research community to coordinate with our long-term optical monitoring program toward the goal of maximum scientific value to both the Fermi and associated radio VLBI monitoring of blazars.
Recent detection of suborbital gamma-ray variability of Flat Spectrum Radio Quasar (FSRQ) 3C 279 by Fermi Large Area Telescope (LAT) is in severe conflict with established models of blazar emission. This paper presents the results of suborbital analy sis of the Fermi/LAT data for the brightest gamma-ray flare of another FSRQ blazar 3C 454.3 in November 2010 (MJD 55516-22). Gamma-ray light curves are calculated for characteristic time bin lengths as short as 3 min. The measured variations of the 0.1-10 GeV photon flux are tested against the hypothesis of steady intraorbit flux. In addition, the structure function is calculated for absolute photon flux differences and for their significances. Significant gamma-ray flux variations are measured only over time scales longer than ~5h, which is consistent with the standard blazar models.
108 - S. Vercellone 2008
We report the first blazar detection by the AGILE satellite. AGILE detected 3C 454.3 during a period of strongly enhanced optical emission in July 2007. AGILE observed the source with a dedicated repointing during the period 2007 July 24-30 with its two co-aligned imagers, the Gamma-Ray Imaging Detector and the hard X-ray imager Super-AGILE sensitive in the 30 MeV-50 GeV and 18-60 keV, respectively. Over the entire period, AGILE detected gamma-ray emission from 3C 454.3 at a significance level of 13.8-$sigma$ with an average flux (E$>$100 MeV) of $(280 pm 40) times 10^{-8}$ photons cm$^{-2}$ s$^{-1}$. The gamma-ray flux appears to be variable towards the end of the observation. No emission was detected by Super-AGILE in the energy range 20-60 keV, with a 3-$sigma$ upper limit of $2.3 times 10^{-3}$ photons cm$^{-2}$ s$^{-1}$. The gamma-ray flux level of 3C 454.3 detected by AGILE is the highest ever detected for this quasar and among the most intense gamma-ray fluxes ever detected from Flat Spectrum Radio Quasars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا