ﻻ يوجد ملخص باللغة العربية
Clocks based on cold atoms offer unbeatable accuracy and long-term stability, but their use in portable quantum technologies is hampered by a large physical footprint. Here, we use the compact optical layout of a grating magneto-optical trap (gMOT) for a precise frequency reference. The gMOT collects $10^7$ $^{87}$Rb atoms, which are subsequently cooled to $20,mu$K in optical molasses. We optically probe the microwave atomic ground-state splitting using lin$perp$lin polarised coherent population trapping and a Raman-Ramsey sequence. With ballistic drop distances of only $0.5,$mm, the measured short-term fractional frequency stability is $2 times 10 ^{-11} /sqrt{tau}$.
Atomic clocks based on optical transitions are the most stable, and therefore precise, timekeepers available. These clocks operate by alternating intervals of atomic interrogation with dead time required for quantum state preparation and readout. Thi
We realize a two-stage, hexagonal pyramid magneto-optical trap (MOT) with strontium, and demonstrate loading of cold atoms into cavity-enhanced 1D and 2D optical lattice traps, all within a single compact assembly of in-vacuum optics. We show that th
We present an improvement of short term frequency stability of the integrating sphere cold atom clock after increasing the intensities of clock signals and optimizing the feedback loop of the clock. A short term frequency stability of $5.0times10^{-1
A diffractive optical element (DOE) has been fabricated for creating blue detuned atomic bottle beam traps. The DOE integrates several diffractive lenses for trap creation and imaging of atomic fluorescence. We characterize the performance of the DOE
The coherence of quantum systems is crucial to quantum information processing. While it has been demonstrated that superconducting qubits can process quantum information at microelectronics rates, it remains a challenge to preserve the coherence and