ترغب بنشر مسار تعليمي؟ اضغط هنا

Cold-atom clock based on a diffractive optic

469   0   0.0 ( 0 )
 نشر من قبل Aidan Arnold
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Clocks based on cold atoms offer unbeatable accuracy and long-term stability, but their use in portable quantum technologies is hampered by a large physical footprint. Here, we use the compact optical layout of a grating magneto-optical trap (gMOT) for a precise frequency reference. The gMOT collects $10^7$ $^{87}$Rb atoms, which are subsequently cooled to $20,mu$K in optical molasses. We optically probe the microwave atomic ground-state splitting using lin$perp$lin polarised coherent population trapping and a Raman-Ramsey sequence. With ballistic drop distances of only $0.5,$mm, the measured short-term fractional frequency stability is $2 times 10 ^{-11} /sqrt{tau}$.



قيم البحث

اقرأ أيضاً

Atomic clocks based on optical transitions are the most stable, and therefore precise, timekeepers available. These clocks operate by alternating intervals of atomic interrogation with dead time required for quantum state preparation and readout. Thi s non-continuous interrogation of the atom system results in the Dick effect, an aliasing of frequency noise of the laser interrogating the atomic transition. Despite recent advances in optical clock stability achieved by improving laser coherence, the Dick effect has continually limited optical clock performance. Here we implement a robust solution to overcome this limitation: a zero-dead-time optical clock based on the interleaved interrogation of two cold-atom ensembles. This clock exhibits vanishingly small Dick noise, thereby achieving an unprecedented fractional frequency instability of $6 times 10^{-17} / sqrt{tau}$ for an averaging time $tau$ in seconds. We also consider alternate dual-atom-ensemble schemes to extend laser coherence and reduce the standard quantum limit of clock stability, achieving a spectroscopy line quality factor $Q> 4 times 10^{15}$.
We realize a two-stage, hexagonal pyramid magneto-optical trap (MOT) with strontium, and demonstrate loading of cold atoms into cavity-enhanced 1D and 2D optical lattice traps, all within a single compact assembly of in-vacuum optics. We show that th e device is suitable for high-performance quantum technologies, focusing especially on its intended application as a strontium optical lattice clock. We prepare $2times 10^4$ spin-polarized atoms of $^{87}$Sr in the optical lattice within 500 ms; we observe a vacuum-limited lifetime of atoms in the lattice of 27 s; and we measure a background DC electric field of 12 Vm$^{-1}$ from stray charges, corresponding to a fractional frequency shift of $(-1.2times 0.8)times 10^{-18}$ to the strontium clock transition. When used in combination with careful management of the blackbody radiation environment, the device shows potential as a platform for realizing a compact, robust, transportable optical lattice clock with systematic uncertainty at the $10^{-18}$ level.
58 - P Liu , Y L Meng , J Y Wan 2016
We present an improvement of short term frequency stability of the integrating sphere cold atom clock after increasing the intensities of clock signals and optimizing the feedback loop of the clock. A short term frequency stability of $5.0times10^{-1 3}tau^{-1/2}$ has been achieved and the limiting factors have been analyzed.
A diffractive optical element (DOE) has been fabricated for creating blue detuned atomic bottle beam traps. The DOE integrates several diffractive lenses for trap creation and imaging of atomic fluorescence. We characterize the performance of the DOE and demonstrate trapping of cold Cesium atoms inside a bottle beam.
The coherence of quantum systems is crucial to quantum information processing. While it has been demonstrated that superconducting qubits can process quantum information at microelectronics rates, it remains a challenge to preserve the coherence and therefore the quantum character of the information in these systems. An alternative is to share the tasks between different quantum platforms, e.g. cold atoms storing the quantum information processed by superconducting circuits. In our experiment, we characterize the coherence of superposition states of 87Rb atoms magnetically trapped on a superconducting atom-chip. We load atoms into a persistent-current trap engineered in the vicinity of an off-resonance coplanar resonator, and observe that the coherence of hyperfine ground states is preserved for several seconds. We show that large ensembles of a million of thermal atoms below 350 nK temperature and pure Bose-Einstein condensates with 3.5 x 10^5 atoms can be prepared and manipulated at the superconducting interface. This opens the path towards the rich dynamics of strong collective coupling regimes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا