ترغب بنشر مسار تعليمي؟ اضغط هنا

Variational algorithms for linear algebra

70   0   0.0 ( 0 )
 نشر من قبل Xiao Yuan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum algorithms have been developed for efficiently solving linear algebra tasks. However, they generally require deep circuits and hence universal fault-tolerant quantum computers. In this work, we propose variational algorithms for linear algebra tasks that are compatible with noisy intermediate-scale quantum devices. We show that the solutions of linear systems of equations and matrix-vector multiplications can be translated as the ground states of the constructed Hamiltonians. Based on the variational quantum algorithms, we introduce Hamiltonian morphing together with an adaptive ansatz for efficiently finding the ground state, and show the solution verification. Our algorithms are especially suitable for linear algebra problems with sparse matrices, and have wide applications in machine learning and optimisation problems. The algorithm for matrix multiplications can be also used for Hamiltonian simulation and open system simulation. We evaluate the cost and effectiveness of our algorithm through numerical simulations for solving linear systems of equations. We implement the algorithm on the IBM quantum cloud device with a high solution fidelity of 99.95%.



قيم البحث

اقرأ أيضاً

149 - Michael Ben-Or , Lior Eldar 2013
Recent results by Harrow et. al. and by Ta-Shma, suggest that quantum computers may have an exponential advantage in solving a wealth of linear algebraic problems, over classical algorithms. Building on the quantum intuition of these results, we step back into the classical domain, and explore its usefulness in designing classical algorithms. We achieve an algorithm for solving the major linear-algebraic problems in time $O(n^{omega+ u})$ for any $ u>0$, where $omega$ is the optimal matrix-product constant. Thus our algorithm is optimal w.r.t. matrix multiplication, and comparable to the state-of-the-art algorithm for these problems due to Demmel et. al. Being derived from quantum intuition, our proposed algorithm is completely disjoint from all previous classical algorithms, and builds on a combination of low-discrepancy sequences and perturbation analysis. As such, we hope it motivates further exploration of quantum techniques in this respect, hopefully leading to improvements in our understanding of space complexity and numerical stability of these problems.
Applications such as simulating large quantum systems or solving large-scale linear algebra problems are immensely challenging for classical computers due their extremely high computational cost. Quantum computers promise to unlock these applications , although fault-tolerant quantum computers will likely not be available for several years. Currently available quantum devices have serious constraints, including limited qubit numbers and noise processes that limit circuit depth. Variational Quantum Algorithms (VQAs), which employ a classical optimizer to train a parametrized quantum circuit, have emerged as a leading strategy to address these constraints. VQAs have now been proposed for essentially all applications that researchers have envisioned for quantum computers, and they appear to the best hope for obtaining quantum advantage. Nevertheless, challenges remain including the trainability, accuracy, and efficiency of VQAs. In this review article we present an overview of the field of VQAs. Furthermore, we discuss strategies to overcome their challenges as well as the exciting prospects for using them as a means to obtain quantum advantage.
We show that nonlinear problems including nonlinear partial differential equations can be efficiently solved by variational quantum computing. We achieve this by utilizing multiple copies of variational quantum states to treat nonlinearities efficien tly and by introducing tensor networks as a programming paradigm. The key concepts of the algorithm are demonstrated for the nonlinear Schr{o}dinger equation as a canonical example. We numerically show that the variational quantum ansatz can be exponentially more efficient than matrix product states and present experimental proof-of-principle results obtained on an IBM Q device.
Variational quantum algorithms (VQAs) are promising methods that leverage noisy quantum computers and classical computing techniques for practical applications. In VQAs, the classical optimizers such as gradient-based optimizers are utilized to adjus t the parameters of the quantum circuit so that the objective function is minimized. However, they often suffer from the so-called vanishing gradient or barren plateau issue. On the other hand, the normalized gradient descent (NGD) method, which employs the normalized gradient vector to update the parameters, has been successfully utilized in several optimization problems. Here, we study the performance of the NGD methods in the optimization of VQAs for the first time. Our goal is two-fold. The first is to examine the effectiveness of NGD and its variants for overcoming the vanishing gradient problems. The second is to propose a new NGD that can attain the faster convergence than the ordinary NGD. We performed numerical simulations of these gradient-based optimizers in the context of quantum chemistry where VQAs are used to find the ground state of a given Hamiltonian. The results show the effective convergence property of the NGD methods in VQAs, compared to the relevant optimizers without normalization. Moreover, we make use of some normalized gradient vectors at the past iteration steps to propose the novel historical NGD that has a theoretical guarantee to accelerate the convergence speed, which is observed in the numerical experiments as well.
Variational Quantum Algorithms (VQAs) are a promising application for near-term quantum processors, however the quality of their results is greatly limited by noise. For this reason, various error mitigation techniques have emerged to deal with noise that can be applied to these algorithms. Recent work introduced a technique for mitigating expectation values against correlated measurement errors that can be applied to measurements of 10s of qubits. We apply these techniques to VQAs and demonstrate its effectiveness in improving estimates to the cost function. Moreover, we use the data resulting from this technique to experimentally characterize measurement errors in terms of the device connectivity on devices of up to 20 qubits. These results should be useful for better understanding the near-term potential of VQAs as well as understanding the correlations in measurement errors on large, near-term devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا