ﻻ يوجد ملخص باللغة العربية
Quantum algorithms have been developed for efficiently solving linear algebra tasks. However, they generally require deep circuits and hence universal fault-tolerant quantum computers. In this work, we propose variational algorithms for linear algebra tasks that are compatible with noisy intermediate-scale quantum devices. We show that the solutions of linear systems of equations and matrix-vector multiplications can be translated as the ground states of the constructed Hamiltonians. Based on the variational quantum algorithms, we introduce Hamiltonian morphing together with an adaptive ansatz for efficiently finding the ground state, and show the solution verification. Our algorithms are especially suitable for linear algebra problems with sparse matrices, and have wide applications in machine learning and optimisation problems. The algorithm for matrix multiplications can be also used for Hamiltonian simulation and open system simulation. We evaluate the cost and effectiveness of our algorithm through numerical simulations for solving linear systems of equations. We implement the algorithm on the IBM quantum cloud device with a high solution fidelity of 99.95%.
Recent results by Harrow et. al. and by Ta-Shma, suggest that quantum computers may have an exponential advantage in solving a wealth of linear algebraic problems, over classical algorithms. Building on the quantum intuition of these results, we step
Applications such as simulating large quantum systems or solving large-scale linear algebra problems are immensely challenging for classical computers due their extremely high computational cost. Quantum computers promise to unlock these applications
We show that nonlinear problems including nonlinear partial differential equations can be efficiently solved by variational quantum computing. We achieve this by utilizing multiple copies of variational quantum states to treat nonlinearities efficien
Variational quantum algorithms (VQAs) are promising methods that leverage noisy quantum computers and classical computing techniques for practical applications. In VQAs, the classical optimizers such as gradient-based optimizers are utilized to adjus
Variational Quantum Algorithms (VQAs) are a promising application for near-term quantum processors, however the quality of their results is greatly limited by noise. For this reason, various error mitigation techniques have emerged to deal with noise