ﻻ يوجد ملخص باللغة العربية
Variational quantum algorithms (VQAs) are promising methods that leverage noisy quantum computers and classical computing techniques for practical applications. In VQAs, the classical optimizers such as gradient-based optimizers are utilized to adjust the parameters of the quantum circuit so that the objective function is minimized. However, they often suffer from the so-called vanishing gradient or barren plateau issue. On the other hand, the normalized gradient descent (NGD) method, which employs the normalized gradient vector to update the parameters, has been successfully utilized in several optimization problems. Here, we study the performance of the NGD methods in the optimization of VQAs for the first time. Our goal is two-fold. The first is to examine the effectiveness of NGD and its variants for overcoming the vanishing gradient problems. The second is to propose a new NGD that can attain the faster convergence than the ordinary NGD. We performed numerical simulations of these gradient-based optimizers in the context of quantum chemistry where VQAs are used to find the ground state of a given Hamiltonian. The results show the effective convergence property of the NGD methods in VQAs, compared to the relevant optimizers without normalization. Moreover, we make use of some normalized gradient vectors at the past iteration steps to propose the novel historical NGD that has a theoretical guarantee to accelerate the convergence speed, which is observed in the numerical experiments as well.
Many near-term quantum computing algorithms are conceived as variational quantum algorithms, in which parameterized quantum circuits are optimized in a hybrid quantum-classical setup. Examples are variational quantum eigensolvers, quantum approximate
Particle-based approximate Bayesian inference approaches such as Stein Variational Gradient Descent (SVGD) combine the flexibility and convergence guarantees of sampling methods with the computational benefits of variational inference. In practice, S
Applications such as simulating large quantum systems or solving large-scale linear algebra problems are immensely challenging for classical computers due their extremely high computational cost. Quantum computers promise to unlock these applications
Stein variational gradient decent (SVGD) has been shown to be a powerful approximate inference algorithm for complex distributions. However, the standard SVGD requires calculating the gradient of the target density and cannot be applied when the grad
We show that nonlinear problems including nonlinear partial differential equations can be efficiently solved by variational quantum computing. We achieve this by utilizing multiple copies of variational quantum states to treat nonlinearities efficien