ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial heterogeneities in structural temperature cause Kovacs expansion gap paradox in aging of glasses

214   0   0.0 ( 0 )
 نشر من قبل Matteo Lulli Dr
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Volume and enthalpy relaxation of glasses after a sudden temperature change has been extensively studied since Kovacs seminal work. One observes an asymmetric approach to equilibrium upon cooling versus heating and, more counter-intuitively, the expansion gap paradox, i.e. a dependence on the initial temperature of the effective relaxation time even close to equilibrium when heating. Here we show that a distinguishable-particles lattice model can capture both the asymmetry and the expansion gap. We quantitatively characterize the energetic states of the particles configurations using a physical realization of the fictive temperature called the structural temperature, which, in the heating case, displays a strong spatial heterogeneity. The system relaxes by nucleation and expansion of warmer mobile domains having attained the final temperature, against cooler immobile domains maintained at the initial temperature. A small population of these cooler regions persists close to equilibrium, thus explaining the paradox.



قيم البحث

اقرأ أيضاً

Motivated by the mean field prediction of a Gardner phase transition between a normal glass and a marginally stable glass, we investigate the off-equilibrium dynamics of three-dimensional polydisperse hard spheres, used as a model for colloidal or gr anular glasses. Deep inside the glass phase, we find that a sharp crossover pressure $P_{rm G}$ separates two distinct dynamical regimes. For pressure $P < P_{rm G}$, the glass behaves as a normal solid, displaying fast dynamics that quickly equilibrates within the glass free energy basin. For $P>P_{rm G}$, instead, the dynamics becomes strongly anomalous, displaying very large equilibration time scales, aging, and a constantly increasing dynamical susceptibility. The crossover at $P_{rm G}$ is strongly reminiscent of the one observed in three-dimensional spin-glasses in an external field, suggesting that the two systems could be in the same universality class, consistently with theoretical expectations.
247 - B. Ruta , G. Baldi , G. Monaco 2013
We present x-ray photon correlation spectroscopy measurements of the atomic dynamics in a Zr67Ni33 metallic glass, well below its glass transition temperature. We find that the decay of the density fluctuations can be well described by compressed, th us faster than exponential, correlation functions which can be modeled by the well-known Kohlrausch-Williams-Watts function with a shape exponent {beta} larger than one. This parameter is furthermore found to be independent of both waiting time and wave-vector, leading to the possibility to rescale all the correlation functions to a single master curve. The dynamics in the glassy state is additionally characterized by different aging regimes which persist in the deep glassy state. These features seem to be universal in metallic glasses and suggest a non diffusive nature of the dynamics. This universality is supported by the possibility of describing the fast increase of the structural relaxation time with waiting time using a unique model function, independently of the microscopic details of the system.
The evolution of porous structure and mechanical properties of binary glasses under tensile loading were examined using molecular dynamics simulations. We consider vitreous systems obtained in the process of phase separation after a rapid isochoric q uench of a glass-forming liquid to a temperature below the glass transition. The porous structure in undeformed samples varies from a connected porous network to a random distribution of isolated pores upon increasing average glass density. We find that at small strain, the elastic modulus follows a power-law dependence on the average glass density and the pore size distribution remains nearly the same as in quiescent samples. Upon further loading, the pores become significantly deformed and coalesce into larger voids that leads to formation of system-spanning empty regions associated with breaking of the material.
Some facets of the way sound waves travel through glasses are still unclear. Recent works have shown that in the low-temperature harmonic limit a crucial role in controlling sound damping is played by local elastic heterogeneity. Sound waves propagat ion has been demonstrated to be strongly affected by inhomogeneous mechanical features of the materials, which add to the anharmonic couplings at finite temperatures. We describe the interplay between these two effects by molecular dynamics simulation of a model glass. In particular, we focus on the transverse components of the vibrational excitations in terms of dynamic structure factors, and characterize the temperature dependence of sound attenuation rates in an extended frequency range. We provide a complete picture of all phenomena, in terms encompassing both theory and experiments.
Dynamical heterogeneities -- strong fluctuations near the glass transition -- are believed to be crucial to explain much of the glass transition phenomenology. One possible hypothesis for their origin is that they emerge from soft (Goldstone) modes a ssociated with a broken continuous symmetry under time reparametrizations. To test this hypothesis, we use numerical simulation data from four glass-forming models to construct coarse grained observables that probe the dynamical heterogeneity, and decompose the fluctuations of these observables into two transverse components associated with the postulated time-fluctuation soft modes and a longitudinal component unrelated to them. We find that as temperature is lowered and timescales are increased, the time reparametrization fluctuations become increasingly dominant, and that their correlation volumes grow together with the correlation volumes of the dynamical heterogeneities, while the correlation volumes for longitudinal fluctuations remain small.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا