ﻻ يوجد ملخص باللغة العربية
We propose and analyze a generalized splitting method to sample approximately from a distribution conditional on the occurrence of a rare event. This has important applications in a variety of contexts in operations research, engineering, and computational statistics. The method uses independent trials starting from a single particle. We exploit this independence to obtain asymptotic and non-asymptotic bounds on the total variation error of the sampler. Our main finding is that the approximation error depends crucially on the relative variability of the number of points produced by the splitting algorithm in one run, and that this relative variability can be readily estimated via simulation. We illustrate the relevance of the proposed method on an application in which one needs to sample (approximately) from an intractable posterior density in Bayesian inference.
Under measurement constraints, responses are expensive to measure and initially unavailable on most of records in the dataset, but the covariates are available for the entire dataset. Our goal is to sample a relatively small portion of the dataset wh
Monte Carlo (MC) sampling methods are widely applied in Bayesian inference, system simulation and optimization problems. The Markov Chain Monte Carlo (MCMC) algorithms are a well-known class of MC methods which generate a Markov chain with the desire
Estimating the probability of rare failure events is an essential step in the reliability assessment of engineering systems. Computing this failure probability for complex non-linear systems is challenging, and has recently spurred the development of
Environmental variability often has substantial impacts on natural populations and communities through its effects on the performance of individuals. Because organisms responses to environmental conditions are often nonlinear (e.g., decreasing perfor
In prediction problems, it is common to model the data-generating process and then use a model-based procedure, such as a Bayesian predictive distribution, to quantify uncertainty about the next observation. However, if the posited model is misspecif