ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Sampling for Generalized Linear Models under Measurement Constraints

137   0   0.0 ( 0 )
 نشر من قبل Tao Zhang
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Under measurement constraints, responses are expensive to measure and initially unavailable on most of records in the dataset, but the covariates are available for the entire dataset. Our goal is to sample a relatively small portion of the dataset where the expensive responses will be measured and the resultant sampling estimator is statistically efficient. Measurement constraints require the sampling probabilities can only depend on a very small set of the responses. A sampling procedure that uses responses at most only on a small pilot sample will be called response-free. We propose a response-free sampling procedure mbox{(OSUMC)} for generalized linear models (GLMs). Using the A-optimality criterion, i.e., the trace of the asymptotic variance, the resultant estimator is statistically efficient within a class of sampling estimators. We establish the unconditional asymptotic distribution of a general class of response-free sampling estimators. This result is novel compared with the existing conditional results obtained by conditioning on both covariates and responses. Under our unconditional framework, the subsamples are no longer independent and new martingale techniques are developed for our asymptotic theory. We further derive the A-optimal response-free sampling distribution. Since this distribution depends on population level quantities, we propose the Optimal Sampling Under Measurement Constraints (OSUMC) algorithm to approximate the theoretical optimal sampling. Finally, we conduct an intensive empirical study to demonstrate the advantages of OSUMC algorithm over existing methods in both statistical and computational perspectives.



قيم البحث

اقرأ أيضاً

Modern data sets in various domains often include units that were sampled non-randomly from the population and have a latent correlation structure. Here we investigate a common form of this setting, where every unit is associated with a latent variab le, all latent variables are correlated, and the probability of sampling a unit depends on its response. Such settings often arise in case-control studies, where the sampled units are correlated due to spatial proximity, family relations, or other sources of relatedness. Maximum likelihood estimation in such settings is challenging from both a computational and statistical perspective, necessitating approximations that take the sampling scheme into account. We propose a family of approximate likelihood approaches which combine composite likelihood and expectation propagation. We demonstrate the efficacy of our solutions via extensive simulations. We utilize them to investigate the genetic architecture of several complex disorders collected in case-control genetic association studies, where hundreds of thousands of genetic variants are measured for every individual, and the underlying disease liabilities of individuals are correlated due to genetic similarity. Our work is the first to provide a tractable likelihood-based solution for case-control data with complex dependency structures.
We propose and analyze a generalized splitting method to sample approximately from a distribution conditional on the occurrence of a rare event. This has important applications in a variety of contexts in operations research, engineering, and computa tional statistics. The method uses independent trials starting from a single particle. We exploit this independence to obtain asymptotic and non-asymptotic bounds on the total variation error of the sampler. Our main finding is that the approximation error depends crucially on the relative variability of the number of points produced by the splitting algorithm in one run, and that this relative variability can be readily estimated via simulation. We illustrate the relevance of the proposed method on an application in which one needs to sample (approximately) from an intractable posterior density in Bayesian inference.
Cognitive diagnosis models (CDMs) are useful statistical tools to provide rich information relevant for intervention and learning. As a popular approach to estimate and make inference of CDMs, the Markov chain Monte Carlo (MCMC) algorithm is widely u sed in practice. However, when the number of attributes, $K$, is large, the existing MCMC algorithm may become time-consuming, due to the fact that $O(2^K)$ calculations are usually needed in the process of MCMC sampling to get the conditional distribution for each attribute profile. To overcome this computational issue, motivated by Culpepper and Hudson (2018), we propose a computationally efficient sequential Gibbs sampling method, which needs $O(K)$ calculations to sample each attribute profile. We use simulation and real data examples to show the good finite-sample performance of the proposed sequential Gibbs sampling, and its advantage over existing methods.
Field observations form the basis of many scientific studies, especially in ecological and social sciences. Despite efforts to conduct such surveys in a standardized way, observations can be prone to systematic measurement errors. The removal of syst ematic variability introduced by the observation process, if possible, can greatly increase the value of this data. Existing non-parametric techniques for correcting such errors assume linear additive noise models. This leads to biased estimates when applied to generalized linear models (GLM). We present an approach based on residual functions to address this limitation. We then demonstrate its effectiveness on synthetic data and show it reduces systematic detection variability in moth surveys.
153 - Song Xi Chen , Bin Guo 2014
We consider testing regression coefficients in high dimensional generalized linear models. An investigation of the test of Goeman et al. (2011) is conducted, which reveals that if the inverse of the link function is unbounded, the high dimensionality in the covariates can impose adverse impacts on the power of the test. We propose a test formation which can avoid the adverse impact of the high dimensionality. When the inverse of the link function is bounded such as the logistic or probit regression, the proposed test is as good as Goeman et al. (2011)s test. The proposed tests provide p-values for testing significance for gene-sets as demonstrated in a case study on an acute lymphoblastic leukemia dataset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا