ﻻ يوجد ملخص باللغة العربية
The concept that catalytic enzymes can act as molecular machines transducing chemical activity into motion has conceptual and experimental support, but much of the claimed support comes from experimental conditions where the substrate concentration is higher than biologically relevant and accordingly exceeds kM, the Michaelis-Menten constant. Moreover, many of the enzymes studied experimentally to date are oligomeric. Urease, a hexamer of subunits, has been considered to be the gold standard demonstrating enhanced diffusion. Here we show that urease and certain other oligomeric enzymes of high catalytic activity above kM dissociate into their smaller subunit fragments that diffuse more rapidly, thus providing a simple physical mechanism of enhanced diffusion in this regime of concentrations. Mindful that this conclusion may be controversial, our findings are sup-ported by four independent analytical techniques, static light scattering, dynamic light scattering (DLS), size-exclusion chroma-tography (SEC), and fluorescence correlation spectroscopy (FCS). Data for urease are presented in the main text and the con-clusion is validated for hexokinase and acetylcholinesterase with data presented in supplementary information. For substrate concentration regimes below kM at which these enzymes do not dissociate, our findings from both FCS and DLS validate that enzymatic catalysis does lead to the enhanced diffusion phenomenon. INTRODUCT
Enhanced diffusion and anti-chemotaxis of enzymes have been reported in several experiments in the last decade, opening up entirely new avenues of research in the bio-nanosciences both at the applied and fundamental level. Here, we introduce a novel
Chemotaxis of enzymes in response to gradients in the concentration of their substrate has been widely reported in recent experiments, but a basic understanding of the process is still lacking. Here, we develop a microscopic theory for chemotaxis, va
The role of proton tunneling in biological catalysis is investigated here within the frameworks of quantum information theory and thermodynamics. We consider the quantum correlations generated through two hydrogen bonds between a substrate and a prot
In multi-resolution simulations, different system components are simultaneously modelled at different levels of resolution, these being smoothly coupled together. In the case of enzyme systems, computationally expensive atomistic detail is needed in
We study the dynamics and conformation of polymers composed by active monomers. By means of Brownian dynamics simulations we show that when the direction of the self-propulsion of each monomer is aligned with the backbone, the polymer undergoes a coi