ﻻ يوجد ملخص باللغة العربية
Hydrodynamical simulations show that a pair of spiral arms can form in the disk around a rapidly-growing young star and that the arms are crucial in transporting angular momentum as the disk accretes material from the surrounding envelope. Here we report the detection of a pair of symmetric spiral structures in a protostellar disk, supporting the formation of spiral arms in the disk around a forming star. The HH 111 VLA 1 source is a young Class I source embedded in a massive infalling protostellar envelope and is actively accreting, driving the prominent HH 111 jet. Previous observations showed a ring of shock emission around the disks outer edge, indicating accretion of the envelope material onto the disk at a high rate. Now with ALMA observations of thermal emission from dust particles, we detect a pair of spiral arms extending from the inner region to the disks outer edge, similar to that seen in many simulations. Additionally, the disk is massive, with Toomres Q parameter near unity in the outer parts where the spiral structures are detected, supporting the notion that envelope accretion is driving the outer disk gravitationally unstable. In our observations, another source, HH 111 VLA 2, is spatially resolved for the first time, showing a disk-like structure with a diameter of ~ 26 au and an orientation nearly orthogonal to that of the HH 111 VLA 1 disk.
Spiral density waves are known to exist in many astrophysical disks, potentially affecting disk structure and evolution. We conduct a numerical study of the effects produced by a density wave, evolving into a shock, on the characteristics of the unde
We perform collisionless N-body simulations to investigate the evolution of the structural and kinematical properties of simulated thick disks induced by the growth of an embedded thin disk. The thick disks used in the present study originate from co
Accretion discs are ubiquitous in the universe and it is a crucial issue to understand how angular momentum and mass are being radially transported in these objects. Here, we study the role played by non-linear spiral patterns within hydrodynamical a
Understanding how accretion proceeds in proto-planetary discs and more generally their dynamics is a crucial issue for explaining the conditions in which planets form. The role that accretion of gas from the surrounding molecular cloud onto the disc
In this note we discuss the main results of a study of a massive binary with unequal mass ratio, q, embedded in an accretion disk, with its orbital rotation being opposed to that of the disk. When the mass ratio is sufficiently large, a gap opens in