ﻻ يوجد ملخص باللغة العربية
Understanding how accretion proceeds in proto-planetary discs and more generally their dynamics is a crucial issue for explaining the conditions in which planets form. The role that accretion of gas from the surrounding molecular cloud onto the disc may have on its structure needs to be quantified. We perform tri-dimensional simulations using the Cartesian AMR code RAMSES of an accretion disc subject to infalling material. For the aspect ratio of $H/R simeq 0.15$ and disk mass $M_d simeq 10^{-2}$ M$_odot$ used in our study, we find that for typical accretion rates on the order of a few 10$^{-7}$ M$_odot$ yr$^{-1}$, values of the $alpha$ parameter as high as a few 10$^{-3}$ are inferred. The mass that is accreted in the inner part of the disc is typically at least $50%$ of the total mass that has been accreted onto the disc. Our results suggest that external accretion of gas at moderate values, onto circumstellar discs may trigger prominent spiral arms, reminiscent of recent observations made with various instruments, and lead to significant transport through the disc. If confirmed from observational studies, such accretion may therefore influence disc evolution.
Accretion discs are ubiquitous in the universe and it is a crucial issue to understand how angular momentum and mass are being radially transported in these objects. Here, we study the role played by non-linear spiral patterns within hydrodynamical a
We numerically investigate the dynamics of a 2D non-magnetised protoplanetary disc surrounded by an inflow coming from an external envelope. We find that the accretion shock between the disc and the inflow is unstable, leading to the generation of la
Spiral arms have been observed in nearly a dozen protoplanetary discs in near-infrared scattered light and recently also in the sub-millimetre continuum. While one of the most compelling explanations is that they are driven by planetary or stellar co
Large-scale vertical magnetic fields are believed to play a key role in the evolution of protoplanetary discs. Associated with non-ideal effects, such as ambipolar diffusion, they are known to launch a wind that could drive accretion in the outer par
We study the gravitational instability and fragmentation of primordial protostellar discs by using high-resolution cosmological hydrodynamics simulations. We follow the formation and evolution of spiral arms in protostellar discs, examine the dynamic