ترغب بنشر مسار تعليمي؟ اضغط هنا

The EUSO@TurLab: Test of Mini-EUSO Engineering Model

89   0   0.0 ( 0 )
 نشر من قبل Hiroko Miyamoto PhD
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The TurLab facility is a laboratory, equipped with a 5 m diameter and 1 m depth rotating tank, located in the Physics Department of the University of Turin. Originally, it was mainly built to study systems of different scales where rotation plays a key role in the fluid behavior such as in atmospheric and oceanic flows. In the past few years the TurLab facility has been used to perform experiments related to the observation of Extreme Energy Cosmic Rays (EECRs) from space using the fluorescence technique. For example, in the case of the JEM-EUSO mission, where the diffuse night brightness and artificial light sources can vary significantly in time and space inside the Field of View of the telescope. The Focal Surface of Mini-EUSO Engineering Model (Mini-EUSO EM) with the level 1 (L1) and 2 (L2) trigger logics implemented in the Photo-Detector Module (PDM) has been tested at TurLab. Tests related to the possibility of using an EUSO-like detector for other type of applications such as Space Debris (SD) monitoring and imaging detector have also been pursued. The tests and results obtained within the EUSO@TurLab Project on these different topics are presented.

قيم البحث

اقرأ أيضاً

The TurLab facility is a laboratory, equipped with a 5 m diameter and 1 m depth rotating tank, located in the Physics Department of the University of Turin. The tank has been built mainly to study problems where system rotation plays a key role in th e fluid behaviour such as in atmospheric and oceanic flows at different scales. The tank can be filled with different fluids of variable density, which enables studies in layered conditions such as sea waves. The tank can be also used to simulate the terrestrial surface with the optical characteristics of different environments such as snow, grass, ocean, land with soil, stones etc., fogs and clouds. As it is located in an extremely dark place, the light intensity can be controlled artificially. Such capabilities of the TurLab facility are applied to perform experiments related to the observation of Extreme Energy Cosmic Rays (EECRs) from space using the fluorescence technique, as in the case of the JEM-EUSO mission, where the diffuse night brightness and artificial light sources can vary significantly in time and space inside the Field of View (FoV) of the telescope. Here we will report the currently ongoing activity at the TurLab facility in the framework of the JEM-EUSO mission (EUSO@TurLab).
Mini-EUSO (Extreme Universe Space Observatory) is a small-scale prototype cosmic-ray detector that will measure Earth`s UV emission and other atmospheric phenomena from space. It will be placed in the International Space Station (ISS) behind a UV-tra nsparent window looking to the nadir. The launch is planned this year (2019). Consisting of a multi-anode photomultiplier (MAPMT) camera and a $25$ cm diameter Fresnel lens system, Mini-EUSO has a ang{44} field of view (FoV), a $6.5$ km$^2$ spatial resolution on the ground and a $2.5 mu$s temporal resolution. In principle, Mini-EUSO will be sensitive to extensive air shower (EAS) from cosmic-rays with energies above $10^{21}$ eV. A mobile, steerable UV laser system will be used to test the expected energy threshold and performance of Mini-EUSO. The laser system will be driven to remote locations in the Western US and aimed across the field of view of Mini-EUSO when the ISS passes overhead during dark nights. It will emit pulsed $355$ nm UV laser light to produce a short speed-of-light track in the detector. The brightness of this track will be similar to the track from an EAS resulting from a cosmic-ray of up to $10^{21}$ eV. The laser energy is selectable with a maximum of around $90$ mJ per pulse. The energy calibration factor is stable within $5 % $. The characteristics of the laser system and Mini-EUSO have been implemented inside the JEM-EUSO OffLine software framework, and laser simulation studies are ongoing to determine the best way to perform a field measurement.
Mini-EUSO is a UV telescope that will look downwards to the Earths atmosphere onboard the International Space Station. With the design of the ultra-high energy cosmic ray fluorescence detectors belonging to the JEM-EUSO program, it will make the firs t UV map of the Earth by observing atmospheric phenomena such as transient luminous events, sprites and lightning, as well as meteors and bioluminescence from earth. Diffused light from laser shots from the ground, which mimic the fluorescence light emitted by Nitrogen molecules when extensive air showers pass through the atmosphere, can be used to verify the capability of this kind of detector to observe ultra-high energy cosmic rays. To validate the electronics and the trigger algorithms developed for Mini-EUSO, a scaled down version of the telescope with 1:9 of the original focal surface and a lens of 2.5 cm diameter has been built. Tests of the Mini-EUSO engineering model have been made in laboratory and in open sky condition. In this paper, we report results of observations of the night sky, which include the detection of stars, meteors, a planet and a rocket body reflecting the sunlight. Interesting results of the observation of city lights are also reported.
410 - F. Capel , A. Belov , G. Cambi`e 2019
We present the data acquisition and control software for the operation of the Mini-Extreme Universe Space Observatory (EUSO), a space-based fluorescence telescope for the observation of extensive air showers and atmospheric phenomena. This framework has been extensively tested alongside the development of Mini-EUSO and was finalized ahead of the successful launch of the instrument to the ISS on August 22, 2019. The data acquisition, housekeeping, and subsystem control are achieved using custom-designed front-end electronics based on a Xilinx Zynq XC7Z030 chip interfaced with a PCIe/104 CPU module via the integrated Zynq processing system. The instrument control interface is handled using an object-oriented C++ design, which can be run both autonomously and interactively as required. Although developed for Mini-EUSO, the modular design of both the software and hardware can easily be scaled up to larger instrument designs and adapted to different subsystem and communication requirements. As such, this framework will also be used in the upgrade of the EUSO-TA instrument and potentially for the next EUSO-SPB2 NASA Balloon flight. The software and firmware presented are open source and released with detailed and integrated documentation.
67 - A. Belov , M. Bertaina , F. Capel 2017
The Mini-EUSO telescope is designed by the JEM-EUSO Collaboration to observe the UV emission of the Earth from the vantage point of the International Space Station (ISS) in low Earth orbit. The main goal of the mission is to map the Earth in the UV, thus increasing the technological readiness level of future EUSO experiments and to lay the groundwork for the detection of Extreme Energy Cosmic Rays (EECRs) from space. Due to its high time resolution of 2.5 us, Mini-EUSO is capable of detecting a wide range of UV phenomena in the Earths atmosphere. In order to maximise the scientific return of the mission, it is necessary to implement a multi-level trigger logic for data selection over different timescales. This logic is key to the success of the mission and thus must be thoroughly tested and carefully integrated into the data processing system prior to the launch. This article introduces the motivation behind the trigger design and details the integration and testing of the logic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا