ترغب بنشر مسار تعليمي؟ اضغط هنا

The EUSO@TurLab Project

69   0   0.0 ( 0 )
 نشر من قبل Hiroko Miyamoto
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The TurLab facility is a laboratory, equipped with a 5 m diameter and 1 m depth rotating tank, located in the Physics Department of the University of Turin. The tank has been built mainly to study problems where system rotation plays a key role in the fluid behaviour such as in atmospheric and oceanic flows at different scales. The tank can be filled with different fluids of variable density, which enables studies in layered conditions such as sea waves. The tank can be also used to simulate the terrestrial surface with the optical characteristics of different environments such as snow, grass, ocean, land with soil, stones etc., fogs and clouds. As it is located in an extremely dark place, the light intensity can be controlled artificially. Such capabilities of the TurLab facility are applied to perform experiments related to the observation of Extreme Energy Cosmic Rays (EECRs) from space using the fluorescence technique, as in the case of the JEM-EUSO mission, where the diffuse night brightness and artificial light sources can vary significantly in time and space inside the Field of View (FoV) of the telescope. Here we will report the currently ongoing activity at the TurLab facility in the framework of the JEM-EUSO mission (EUSO@TurLab).

قيم البحث

اقرأ أيضاً

The TurLab facility is a laboratory, equipped with a 5 m diameter and 1 m depth rotating tank, located in the Physics Department of the University of Turin. Originally, it was mainly built to study systems of different scales where rotation plays a k ey role in the fluid behavior such as in atmospheric and oceanic flows. In the past few years the TurLab facility has been used to perform experiments related to the observation of Extreme Energy Cosmic Rays (EECRs) from space using the fluorescence technique. For example, in the case of the JEM-EUSO mission, where the diffuse night brightness and artificial light sources can vary significantly in time and space inside the Field of View of the telescope. The Focal Surface of Mini-EUSO Engineering Model (Mini-EUSO EM) with the level 1 (L1) and 2 (L2) trigger logics implemented in the Photo-Detector Module (PDM) has been tested at TurLab. Tests related to the possibility of using an EUSO-like detector for other type of applications such as Space Debris (SD) monitoring and imaging detector have also been pursued. The tests and results obtained within the EUSO@TurLab Project on these different topics are presented.
EUSO-TA is a pathfinder experiment for the space based JEM-EUSO mission for the detection of ultra-high energy cosmic rays. EUSO-TA is an high-resolution fluorescence telescope installed in front of the Black Rock Mesa fluorescence detectors of the T elescope Array (TA) experiment, in Utah (USA). At the TA site, a Central Laser Facility is installed for calibration purposes, since it emits laser beams with known energy and geometry. EUSO-TA consists of two 1 $mbox{m}^2$ Fresnel lenses, with a field of view of 10.5{deg} that focus the light on a Photo Detector Module (PDM). The PDM currently consists of 36 Hamamatsu Multi-Anode Photo-Multipliers Tubes (MAPMTs) with 64 channels each. Front-end readout is performed by 36 ASICS, with two FPGA boards that send the data to a CPU and a storage system. The detector was installed in February 2015. Tests using the mentioned light sources have been performed and observations of cosmic ray events, as well as those of stars with different magnitude and color index have been done. The data acquisition is triggered by TA fluorescence detectors, although a self-trigger algorithm is currently in the last phases of development and test. With TA, thanks to its large field of view and the surface detectors, the cosmic ray shower events are reconstructed and the parameters are used to perform simulations of the response of EUSO-TA detector using EUSO-Offline. Simulations of the detected events are compared with data and the results are shown in this work.
SiTian is an ambitious ground-based all-sky optical monitoring project, developed by the Chinese Academy of Sciences. The concept is an integrated network of dozens of 1-m-class telescopes deployed partly in China and partly at various other sites ar ound the world. The main science goals are the detection, identification and monitoring of optical transients (such as gravitational wave events, fast radio bursts, supernovae) on the largely unknown timescales of less than 1 day; SiTian will also provide a treasure trove of data for studies of AGN, quasars, variable stars, planets, asteroids, and microlensing events. To achieve those goals, SiTian will scan at least 10,000 square deg of sky every 30 min, down to a detection limit of $V approx 21$ mag. The scans will produce simultaneous light-curves in 3 optical bands. In addition, SiTian will include at least three 4-m telescopes specifically allocated for follow-up spectroscopy of the most interesting targets. We plan to complete the installation of 72 telescopes by 2030 and start full scientific operations in 2032.
This document contains a summary of the workshop which took place on 22 - 24 February 2012 at the Kavli Institute of Cosmological Physics in the University of Chicago. The goal of the workshop was to discuss the physics reach of the JEM-EUSO mission and how best to implement a global ground based calibration system for the instrument to realize the physics goal of unveiling the origin of the highest energy cosmic rays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا