ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum phase transitions in the Kane-Mele-Hubbard model

675   0   0.0 ( 0 )
 نشر من قبل Martin Hohenadler
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the two-dimensional Kane-Mele-Hubbard model at half filling by means of quantum Monte Carlo simulations. We present a refined phase boundary for the quantum spin liquid. The topological insulator at finite Hubbard interaction strength is adiabatically connected to the groundstate of the Kane-Mele model. In the presence of spin-orbit coupling, magnetic order at large Hubbard U is restricted to the transverse direction. The transition from the topological band insulator to the antiferromagnetic Mott insulator is in the universality class of the three-dimensional XY model. The numerical data suggest that the spin liquid to topological insulator and spin liquid to Mott insulator transitions are both continuous.



قيم البحث

اقرأ أيضاً

We study the quantum phases and phase transitions of the Kane-Mele Hubbard (KMH) model on a zigzag ribbon of honeycomb lattice at a finite size via the weak-coupling renormalization group (RG) approach. In the non-interacting limit, the KM model is k nown to support topological edge states where electrons show helical property with orientations of the spin and momentum being locked. The effective inter-edge hopping terms are generated due to finite-size effect. In the presence of an on-site Coulomb repulsive interaction and the inter-edge hoppings, special focus is put on the stability of the topological edge states (TI phase) in the KMH model against (i) the charge and spin gaped (II) phase, (ii) the charge gaped but spin gapless (IC) phase and (iii) the spin gaped but charge gapless (CI) phase depending on the number (even/odd) of the zigzag ribbons, doping level (electron filling factor) and the ratio of the Coulomb interaction to the inter-edge tunneling. We discuss different phase diagrams for even and odd numbers of zigzag ribbons. We find the TI-CI, II-IC, and II-CI quantum phase transitions are of the Kosterlitz-Thouless (KT) type. By computing various correlation functions, we further analyze the nature and leading instabilities of these phases.
We determine the phase diagram of the Kane-Mele model with a long-range Coulomb interaction using an exact quantum Monte Carlo method. Long-range interactions are expected to play a role in honeycomb materials because the vanishing density of states in the semimetallic weak-coupling phase suppresses screening. According to our results, the Kane-Mele-Coulomb model supports the same phases as the Kane-Mele-Hubbard model. The nonlocal part of the interaction promotes short-range sublattice charge fluctuations, which compete with antiferromagnetic order driven by the onsite repulsion. Consequently, the critical interaction for the magnetic transition is significantly larger than for the purely local Hubbard repulsion. Our numerical data are consistent with $SU(2)$ Gross-Neveu universality for the semimetal to antiferromagnet transition, and with 3D XY universality for the quantum spin Hall to antiferromagnet transition.
The description of interactions in strongly-correlated topological phases of matter remains a challenge. Here, we develop a stochastic functional approach for interacting topological insulators including both charge and spin channels. We find that th e Mott transition of the Kane-Mele-Hubbard model may be described by the variational principle with one equation. We present different views of this equation from the electron Greens function, the free-energy and the Hellmann-Feynman theorem. The band gap remains finite at the transition and the Mott phase is characterized by antiferromagnetism in the $x-y$ plane. The interacting topological phase is described through a $mathbb{Z}_2$ number related to helical edge modes. Our results then show that improving stochastic approaches can give further insight on the understanding of interacting phases of matter.
169 - Jun Goryo , Nobuki Maeda 2011
We investigate the magnetic response in the quantum spin Hall phase of the layered Kane-Mele model with Hubbard interaction, and argue a condition to obtain the Meissner effect. The effect of Rashba spin orbit coupling is also discussed.
144 - K. Seki , Y. Ohta 2012
Quantum phase transitions in the Hubbard model on the honeycomb lattice are investigated in the variational cluster approximation. The critical interaction for the paramagnetic to antiferromagnetic phase transition is found to be in remarkable agreem ent with a recent large-scale quantum Monte Carlo simulation. Calculated staggered magnetization increases continuously with $U$ and thus we find the phase transition is of a second order. We also find that the semimetal-insulator transition occurs at infinitesimally small interaction and thus a paramagnetic insulating state appears in a wide interaction range. A crossover behavior of electrons from itinerant to localized character found in the calculated single-particle excitation spectra and short-range spin correlation functions indicates that an effective spin model for the paramagnetic insulating phase is far from a simple Heisenberg model with a nearest-neighbor exchange interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا