ترغب بنشر مسار تعليمي؟ اضغط هنا

NLO QCD and electroweak corrections to $Z+gamma$ production with leptonic Z-boson decays

79   0   0.0 ( 0 )
 نشر من قبل Ansgar Denner
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The next-to-leading-order electroweak corrections to $ppto l^+l^-/bar u u+gamma+X$ production, including all off-shell effects of intermediate Z bosons in the complex-mass scheme, are calculated for LHC energies, revealing the typically expected large corrections of tens of percent in the TeV range. Contributions from quark-photon and photon-photon initial states are taken into account as well, but their impact is found to be moderate or small. Moreover, the known next-to-leading-order QCD corrections are reproduced. In order to separate hard photons from jets, both a quark-to-photon fragmentation function a la Glover/Morgan and Frixiones cone isolation are employed. The calculation is available in the form of Monte Carlo programs allowing for the evaluation of arbitrary differential cross sections. Predictions for integrated cross sections are presented for the LHC at 7 TeV, 8 TeV, and 14 TeV, and differential distributions are discussed at 14 TeV for bare muons and dressed leptons. Finally, we consider the impact of anomalous $ZZgamma$ and $Zgammagamma$ couplings.



قيم البحث

اقرأ أيضاً

This article presents results for the last unknown two-loop contributions to the $Z$-boson partial widths and $Z$-peak cross-section. These are the so-called bosonic electroweak two-loop corrections, where bosonic refers to diagrams without closed fe rmion loops. Together with the corresponding results for the $Z$-pole asymmetries $A_l, A_b$, which have been presented earlier, this completes the theoretical description of $Z$-boson precision observables at full two-loop precision within the Standard Model. The calculation has been achieved through a combination of different methods: (a) numerical integration of Mellin-Barnes representations with contour rotations and contour shifts to improve convergence; (b) sector decomposition with numerical integration over Feynman parameters; (c) dispersion relations for sub-loop insertions. Numerical results are presented in the form of simple parameterization formulae for the total width, $Gamma_{rm Z}$, partial decay widths $Gamma_{e,mu},Gamma_{tau},Gamma_{ u},Gamma_{u},Gamma_{c},Gamma_{d,s},Gamma_{b}$, branching ratios $R_l,R_c,R_b$ and the hadronic peak cross-section, $sigma_{rm had}^0$. Theoretical intrinsic uncertainties from missing higher orders are also discussed.
We present the QCD radiative corrections to the full off-shell $rm tbar{t}W^+$ production, considering a final state with three charged leptons, two b jets and missing energy. All interferences, off-shell effects and spin correlations are included in the calculation. Beyond presenting integrated and differential results for the full off-shell process, we compare them with those obtained applying a double-pole approximation to the virtual corrections.
We compute the hadronic production of top-antitop pairs in association with a Higgs boson at next-to-leading-order QCD, including the decay of the top and antitop quark into bottom quarks and leptons. Our computation is based on full leading and next -to-leading-order matrix elements for $e^+ u_e mu^-bar{ u}_mu b bar{b} H(j)$ and includes all non-resonant contributions, off-shell effects and interferences. Numerical results for the integrated cross section and several differential distributions are given for the LHC operating at 13 TeV using a fixed and a dynamical factorization and renormalization scale. The use of the dynamical instead of the fixed scale improves the perturbative stability in high-energy tails of most distributions, while the integrated cross section is hardly affected differing by only about one per cent and leading to the same K factor of 1.17.
254 - S. Actis , G. Passarino , C. Sturm 2008
Results for the complete NLO electroweak corrections to Standard Model Higgs production via gluon fusion are included in the total cross section for hadronic collisions. Artificially large threshold effects are avoided working in the complex-mass sch eme. The numerical impact at LHC (Tevatron) energies is explored for Higgs mass values up to 500 GeV (200 GeV). Assuming a complete factorization of the electroweak corrections, one finds a +5 % shift with respect to the NNLO QCD cross section for a Higgs mass of 120 GeV both at the LHC and the Tevatron. Adopting two different factorization schemes for the electroweak effects, an estimate of the corresponding total theoretical uncertainty is computed.
We present NLO QCD results for W/Z gauge boson production with bottom quark pairs at the Tevatron including full bottom-quark mass effects. We study the impact of QCD corrections on both total cross-section and invariant mass distribution of the bott om-quark pair. Including NLO QCD corrections greatly reduces the dependence of the tree-level cross-section on the renormalization and factorization scales. We also compare our calculation to a calculation that considers massless bottom quarks and find that the bottom-quark mass effects amount to about 8-10% of the total NLO QCD cross-section and can impact the shape of the bottom-quark pair invariant mass distribution, in particular in the low invariant mass region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا