ﻻ يوجد ملخص باللغة العربية
Neuromorphic hardware platforms implement biological neurons and synapses to execute spiking neural networks (SNNs) in an energy-efficient manner. We present SpiNeMap, a design methodology to map SNNs to crossbar-based neuromorphic hardware, minimizing spike latency and energy consumption. SpiNeMap operates in two steps: SpiNeCluster and SpiNePlacer. SpiNeCluster is a heuristic-based clustering technique to partition SNNs into clusters of synapses, where intracluster local synapses are mapped within crossbars of the hardware and inter-cluster global synapses are mapped to the shared interconnect. SpiNeCluster minimizes the number of spikes on global synapses, which reduces spike congestion on the shared interconnect, improving application performance. SpiNePlacer then finds the best placement of local and global synapses on the hardware using a meta-heuristic-based approach to minimize energy consumption and spike latency. We evaluate SpiNeMap using synthetic and realistic SNNs on the DynapSE neuromorphic hardware. We show that SpiNeMap reduces average energy consumption by 45% and average spike latency by 21%, compared to state-of-the-art techniques.
Neuromorphic computing systems are embracing memristors to implement high density and low power synaptic storage as crossbar arrays in hardware. These systems are energy efficient in executing Spiking Neural Networks (SNNs). We observe that long bitl
The design of many-core neuromorphic hardware is getting more and more complex as these systems are expected to execute large machine learning models. To deal with the design complexity, a predictable design flow is needed to guarantee real-time perf
We describe a method to train spiking deep networks that can be run using leaky integrate-and-fire (LIF) neurons, achieving state-of-the-art results for spiking LIF networks on five datasets, including the large ImageNet ILSVRC-2012 benchmark. Our me
Hardware implementation of neuromorphic computing can significantly improve performance and energy efficiency of machine learning tasks implemented with spiking neural networks (SNNs), making these hardware platforms particularly suitable for embedde
Spiking Neural Networks (SNN) are an emerging computation model, which uses event-driven activation and bio-inspired learning algorithms. SNN-based machine-learning programs are typically executed on tile- based neuromorphic hardware platforms, where