ﻻ يوجد ملخص باللغة العربية
Using multisets, we develop novel techniques for mechanizing the proofs of the synthesis conjectures for list-sorting algorithms, and we demonstrate them in the Theorema system. We use the classical principle of extracting the algorithm as a set of rewrite rules based on the witnesses found in the proof of the synthesis conjecture produced from the specification of the desired function (input and output conditions). The proofs are in natural style, using standard rules, but most importantly domain specific inference rules and strategies. In particular the use of multisets allows us to develop powerful strategies for the synthesis of arbitrarily structured recursive algorithms by general Noetherian induction, as well as for the automatic generation of the specifications of all necessary auxiliary functions (insert, merge, split), whose synthesis is performed using the same method.
Since the proof of the four color theorem in 1976, computer-generated proofs have become a reality in mathematics and computer science. During the last decade, we have seen formal proofs using verified proof assistants being used to verify the validi
In this work we provide algorithmic solutions to five fundamental problems concerning the verification, synthesis and correction of concurrent systems that can be modeled by bounded p/t-nets. We express concurrency via partial orders and assume that
We interpret Linear Logic Proof Nets in a term language based on Solos calculus. The system includes a synchronisation mechanism, obtained by a conservative extension of the logic, that enables to define non-deterministic behaviours and multiparty sessions.
Most proof systems for concurrent programs assume the underlying memory model to be sequentially consistent (SC), an assumption which does not hold for modern multicore processors. These processors, for performance reasons, implement relaxed memory m
Many systems are naturally modeled as Markov Decision Processes (MDPs), combining probabilities and strategic actions. Given a model of a system as an MDP and some logical specification of system behavior, the goal of synthesis is to find a policy th