ﻻ يوجد ملخص باللغة العربية
In order to get homogeneous nanostructured Aluminum Nitride deposits, thin films were grown at room temperature on [001] Si substrates by radio frequency magnetron reactive sputtering. The deposits were analysed by Transmission Electron Microscopy, energy dispersive X-ray spectroscopy and Auger electron spectroscopy. Their microstructure and chemical composition were studied versus the plasma working pressure and the radio frequency power. Systematic analysis of cross views of the films allowed the authors to draw a microstructure/process parameters map. Four microstructural types were distinguished according to the decrease of the deposition rate. One is the well-known columnar microstructure. The second one is made of interrupted columns or fibrous grains. The third one is made of nano-sized particles (size of the particles ranges from 1.7 to 8 nm). The fourth and last microstructure is amorphous. The deposit morphology-process parameters correlation is commented on.
Er-doped aluminum nitride films, containing different Er concentrations, were obtained at room temperature by reactive radio frequency magnetron sputtering. The prepared samples show a nano-columnar microstructure and the size of the columns is depen
We demonstrate the self-assembled formation of AlN nanowires by molecular beam epitaxy on sputtered TiN films on sapphire. This choice of substrate allows growth at an exceptionally high temperature of 1180 {deg}C. In contrast to previous reports, th
The effect of magnetron power on the room temperature 1.54 $mu$m infra-red photoluminescence intensity of erbium doped AlN films grown by r. f. magnetron sputtering, has been studied. The AlN:Er thin films were deposited on (001) Silicon substrates.
In the prospect of understanding the photoluminescence mechanisms of AlN films doped with erbium and targeting photonic applications we have synthesized non doped and Er-doped AlN films with different crystallized nanostructures by using PVD magnetro
Nanocrystalline n-AlN:Er thin films were deposited on (001) Silicon substrates by r. f. magnetron sputtering at room temperature to study the correlation between 1.54 $mu$m IR photoluminescence (PL) intensity, AlN crystalline structure and Er concent