ﻻ يوجد ملخص باللغة العربية
We construct the etale motivic Borel-Moore homology of derived Artin stacks. Using a derived version of the intrinsic normal cone, we construct fundamental classes of quasi-smooth derived Artin stacks and demonstrate functoriality, base change, excess intersection, and Grothendieck-Riemann-Roch formulas. These classes also satisfy a general cohomological Bezout theorem which holds without any transversity hypotheses. The construction is new even for classical stacks and as one application we extend Gabbers proof of the absolute purity conjecture to Artin stacks.
Let V be a convex vector bundle over a smooth projective manifold X, and let Y be the subset of X which is the zero locus of a regular section of V. This mostly expository paper discusses a conjecture which relates the virtual fundamental classes of
In [DKO] we constructed virtual fundamental classes $[[ Hilb^m_V ]]$ for Hilbert schemes of divisors of topological type m on a surface V, and used these classes to define the Poincare invariant of V: (P^+_V,P^-_V): H^2(V,Z) --> Lambda^* H^1(V,Z) x
These are some notes on the basic properties of algebraic K-theory and G-theory of derived algebraic spaces and stacks, and the theory of fundamental classes in this setting.
In this paper we present an approach to quadratic structures in derived algebraic geometry. We define derived n-shifted quadratic complexes, over derived affine stacks and over general derived stacks, and give several examples of those. We define the
We develop the theory of fundamental classes in the setting of motivic homotopy theory. Using this we construct, for any motivic spectrum, an associated bivariant theory in the sense of Fulton-MacPherson. We import the tools of Fultons intersection t