ﻻ يوجد ملخص باللغة العربية
For a vectorial Bernoulli-type free boundary problem, with no sign assumption on the components, we prove that flatness of the free boundary implies $C^{1,alpha}$ regularity, as well-known in the scalar case cite{AC,C2}. While in cite{MTV2} the same result is obtained for minimizing solutions by using a reduction to the scalar problem, and the NTA structure of the regular part of the free boundary, our result uses directly a viscosity approach on the vectorial problem, in the spirit of cite{D}. We plan to use the approach developed here in vectorial free boundary problems involving a fractional Laplacian, as those treated in the scalar case in cite{DR, DSS}.
The semi-geostrophic system is widely used in the modelling of large-scale atmospheric flows. In this paper, we prove existence of solutions of the incompressible semi-geostrophic equations in a fully three-dimensional domain with a free upper bounda
We develop an existence and regularity theory for a class of degenerate one-phase free boundary problems. In this way we unify the basic theories in free boundary problems like the classical one-phase problem, the obstacle problem, or more generally for minimizers of the Alt-Phillips functional.
This is an introduction to The Theme Issue on Free Boundary Problems and Related Topics, which consists of 14 survey/review articles on the topics, of Philosophical Transactions of the Royal Society A: Physical, Mathematical and Engineering Sciences, 373, no. 2050, The Royal Society, 2015.
This work is dedicated to the development of the theory of Fourier hyperfunctions in one variable with values in a complex non-necessarily metrisable locally convex Hausdorff space $E$. Moreover, necessary and sufficient conditions are described such
In this paper, we investigate the convergence rates of inviscid limits for the free-boundary problems of the incompressible magnetohydrodynamics (MHD) with or without surface tension in $mathbb{R}^3$, where the magnetic field is identically constant