ﻻ يوجد ملخص باللغة العربية
For a number ring $mathcal{O}$, Borel and Serre proved that $text{SL}_n(mathcal{O})$ is a virtual duality group whose dualizing module is the Steinberg module. They also proved that $text{GL}_n(mathcal{O})$ is a virtual duality group. In contrast to $text{SL}_n(mathcal{O})$, we prove that the dualizing module of $text{GL}_n(mathcal{O})$ is sometimes the Steinberg module, but sometimes instead is a variant that takes into account a sort of orientation. Using this, we obtain vanishing and nonvanishing theorems for the cohomology of $text{GL}_n(mathcal{O})$ in its virtual cohomological dimension.
Let $Gamma_n(p)$ be the level-$p$ principal congruence subgroup of $text{SL}_n(mathbb{Z})$. Borel-Serre proved that the cohomology of $Gamma_n(p)$ vanishes above degree $binom{n}{2}$. We study the cohomology in this top degree $binom{n}{2}$. Let $mat
We give an elementary proof of the well-known fact that the third cohomology group H^3(G, M) of a group G with coefficients in an abelian G-module M is in bijection to the set Ext^2(G, M) of equivalence classes of crossed module extensions of G with M.
Let $L$ be a finite extension of $mathbb{Q}_p$, and $rho_L$ be an $n$-dimensional semi-stable non crystalline $p$-adic representation of $mathrm{Gal}_L$ with full monodromy rank. Via a study of Breuils (simple) $mathcal{L}$-invariants, we attach to $
We study the arithmetic of degree $N-1$ Eisenstein cohomology classes for locally symmetric spaces associated to $mathrm{GL}_N$ over an imaginary quadratic field $k$. Under natural conditions we evaluate these classes on $(N-1)$-cycles associated to
In this paper we establish a new case of Langlands functoriality. More precisely, we prove that the tensor product of the compatible system of Galois representations attached to a level-1 classical modular form and the compatible system attached to a