ترغب بنشر مسار تعليمي؟ اضغط هنا

Automorphy of $mathrm{GL}_2otimes mathrm{GL}_n$ in the self-dual case

88   0   0.0 ( 0 )
 نشر من قبل Sara Arias-de-Reyna
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we establish a new case of Langlands functoriality. More precisely, we prove that the tensor product of the compatible system of Galois representations attached to a level-1 classical modular form and the compatible system attached to an n-dimensional RACP automorphic representation of GL_n of the adeles of Q is automorphic, for any positive integer n, under some natural hypotheses (namely regularity and irreducibility).



قيم البحث

اقرأ أيضاً

103 - Yiwen Ding 2018
Let $L$ be a finite extension of $mathbb{Q}_p$, and $rho_L$ be an $n$-dimensional semi-stable non crystalline $p$-adic representation of $mathrm{Gal}_L$ with full monodromy rank. Via a study of Breuils (simple) $mathcal{L}$-invariants, we attach to $ rho_L$ a locally $mathbb{Q}_p$-analytic representation $Pi(rho_L)$ of $mathrm{GL}_n(L)$, which carries the exact information of the Fontaine-Mazur simple $mathcal{L}$-invariants of $rho_L$. When $rho_L$ comes from an automorphic representation of $G(mathbb{A}_{F^+})$ (for a unitary group $G$ over a totally real filed $F^+$ which is compact at infinite places and $mathrm{GL}_n$ at $p$-adic places), we prove under mild hypothesis that $Pi(rho_L)$ is a subrerpresentation of the associated Hecke-isotypic subspaces of the Banach spaces of $p$-adic automorphic forms on $G(mathbb{A}_{F^+})$. In other words, we prove the equality of Breuils simple $mathcal{L}$-invariants and Fontaine-Mazur simple $mathcal{L}$-invariants.
Let $L$ be a finite extension of $mathbb{Q}_p$ and $ngeq 2$. We associate to a crystabelline $n$-dimensional representation of $mathrm{Gal}(overline L/L)$ satisfying mild genericity assumptions a finite length locally $mathbb{Q}_p$-analytic represent ation of $mathrm{GL}_n(L)$. In the crystalline case and in a global context, using the recent results on the locally analytic socle from [BHS17a] we prove that this representation indeed occurs in spaces of $p$-adic automorphic forms. We then use this latter result in the ordinary case to show that certain ordinary $p$-adic Banach space representations constructed in our previous work appear in spaces of $p$-adic automorphic forms. This gives strong new evidence to our previous conjecture in the $p$-adic case.
173 - Yiwen Ding 2019
We prove automorphy lifting results for certain essentially conjugate self-dual $p$-adic Galois representations $rho$ over CM imaginary fields $F$, which satisfy in particular that $p$ splits in $F$, and that the restriction of $rho$ on any decomposi tion group above $p$ is reducible with all the Jordan-Holder factors of dimension at most $2$. We also show some results on Breuils locally analytic socle conjecture in certain non-trianguline case. The main results are obtained by establishing an $R=mathbb{T}$-type result over the $mathrm{GL}_2(mathbb{Q}_p)$-ordinary families considered by Breuil-Ding.
We study the arithmetic of degree $N-1$ Eisenstein cohomology classes for locally symmetric spaces associated to $mathrm{GL}_N$ over an imaginary quadratic field $k$. Under natural conditions we evaluate these classes on $(N-1)$-cycles associated to degree $N$ extensions $F/k$ as linear combinations of generalised Dedekind sums. As a consequence we prove a remarkable conjecture of Sczech and Colmez expressing critical values of $L$-functions attached to Hecke characters of $F$ as polynomials in Kronecker--Eisenstein series evaluated at torsion points on elliptic curves with multiplication by $k$. We recover in particular the algebraicity of these critical values.
348 - Yiwen Ding 2015
We study some closed rigid subspaces of the eigenvarieties, constructed by using the Jacquet-Emerton functor for parabolic non-Borel subgroups. As an application (and motivation), we prove some new results on Breuils locally analytic socle conjecture for $mathrm{GL}_n(mathbb{Q}_p)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا