ترغب بنشر مسار تعليمي؟ اضغط هنا

An Empirical Study of Incorporating Pseudo Data into Grammatical Error Correction

117   0   0.0 ( 0 )
 نشر من قبل Shun Kiyono
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The incorporation of pseudo data in the training of grammatical error correction models has been one of the main factors in improving the performance of such models. However, consensus is lacking on experimental configurations, namely, choosing how the pseudo data should be generated or used. In this study, these choices are investigated through extensive experiments, and state-of-the-art performance is achieved on the CoNLL-2014 test set ($F_{0.5}=65.0$) and the official test set of the BEA-2019 shared task ($F_{0.5}=70.2$) without making any modifications to the model architecture.



قيم البحث

اقرأ أيضاً

233 - Tao Ge , Furu Wei , Ming Zhou 2018
Neural sequence-to-sequence (seq2seq) approaches have proven to be successful in grammatical error correction (GEC). Based on the seq2seq framework, we propose a novel fluency boost learning and inference mechanism. Fluency boosting learning generate s diverse error-corrected sentence pairs during training, enabling the error correction model to learn how to improve a sentences fluency from more instances, while fluency boosting inference allows the model to correct a sentence incrementally with multiple inference steps. Combining fluency boost learning and inference with convolutional seq2seq models, our approach achieves the state-of-the-art performance: 75.72 (F_{0.5}) on CoNLL-2014 10 annotation dataset and 62.42 (GLEU) on JFLEG test set respectively, becoming the first GEC system that reaches human-level performance (72.58 for CoNLL and 62.37 for JFLEG) on both of the benchmarks.
Recent progress in the task of Grammatical Error Correction (GEC) has been driven by addressing data sparsity, both through new methods for generating large and noisy pretraining data and through the publication of small and higher-quality finetuning data in the BEA-2019 shared task. Building upon recent work in Neural Machine Translation (NMT), we make use of both kinds of data by deriving example-level scores on our large pretraining data based on a smaller, higher-quality dataset. In this work, we perform an empirical study to discover how to best incorporate delta-log-perplexity, a type of example scoring, into a training schedule for GEC. In doing so, we perform experiments that shed light on the function and applicability of delta-log-perplexity. Models trained on scored data achieve state-of-the-art results on common GEC test sets.
Grammatical Error Correction (GEC) has been recently modeled using the sequence-to-sequence framework. However, unlike sequence transduction problems such as machine translation, GEC suffers from the lack of plentiful parallel data. We describe two a pproaches for generating large parallel datasets for GEC using publicly available Wikipedia data. The first method extracts source-target pairs from Wikipedia edit histories with minimal filtration heuristics, while the second method introduces noise into Wikipedia sentences via round-trip translation through bridge languages. Both strategies yield similar sized parallel corpora containing around 4B tokens. We employ an iterative decoding strategy that is tailored to the loosely supervised nature of our constructed corpora. We demonstrate that neural GEC models trained using either type of corpora give similar performance. Fine-tuning these models on the Lang-8 corpus and ensembling allows us to surpass the state of the art on both the CoNLL-2014 benchmark and the JFLEG task. We provide systematic analysis that compares the two approaches to data generation and highlights the effectiveness of ensembling.
We propose a neural encoder-decoder model with reinforcement learning (NRL) for grammatical error correction (GEC). Unlike conventional maximum likelihood estimation (MLE), the model directly optimizes towards an objective that considers a sentence-l evel, task-specific evaluation metric, avoiding the exposure bias issue in MLE. We demonstrate that NRL outperforms MLE both in human and automated evaluation metrics, achieving the state-of-the-art on a fluency-oriented GEC corpus.
We describe an approach to Grammatical Error Correction (GEC) that is effective at making use of models trained on large amounts of weakly supervised bitext. We train the Transformer sequence-to-sequence model on 4B tokens of Wikipedia revisions and employ an iterative decoding strategy that is tailored to the loosely-supervised nature of the Wikipedia training corpus. Finetuning on the Lang-8 corpus and ensembling yields an F0.5 of 58.3 on the CoNLL14 benchmark and a GLEU of 62.4 on JFLEG. The combination of weakly supervised training and iterative decoding obtains an F0.5 of 48.2 on CoNLL14 even without using any labeled GEC data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا