ترغب بنشر مسار تعليمي؟ اضغط هنا

Suzaku Observation of Diffuse X-Ray Emission from a Southwest Region of the Carina Nebula

166   0   0.0 ( 0 )
 نشر من قبل Yuichiro Ezoe
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A southwest region of the Carina nebula was observed with the Suzaku observatory for 47 ks in 2010 December. This region shows distinctively soft X-ray emission in the Chandra campaign observations. Suzaku clearly detects the diffuse emission above known foreground and background components between 0.4-5 keV at the surface brightness of 3.3x10^-14 erg s^{-1} arcmin^{-2}. The spectrum requires two plasma emission components with kT~0.2 and 0.5 keV, which suffer interstellar absorption of N_H~1.9x10^{21} cm^{-2}. Multiple absorption models assuming two temperature plasmas at ionization equilibrium or non-equilibrium are tested but there is no significant difference in terms of chi^2/d.o.f.. These plasma temperatures are similar to those of the central and eastern parts of the Carina nebula measured in earlier Suzaku observations, but the surface brightness of the hot component is significantly lower than those of the other regions. This means that these two plasma components are physically separated and have different origins. The elemental abundances of O, Ne and Mg with respect to Fe favor that the diffuse plasma originates from core-collapsed supernovae or massive stellar winds.



قيم البحث

اقرأ أيضاً

We present the analysis of Suzaku observations of the young open cluster Westerlund 2, which is filled with diffuse X-ray emission. We found that the emission consists of three thermal components or two thermal and one non-thermal components. The upp er limit of the energy flux of the non-thermal component is smaller than that in the TeV band observed with H.E.S.S. This may indicate that active particle acceleration has stopped in this cluster, and that the accelerated electrons have already cooled. The gamma-ray emission observed with H.E.S.S. is likely to come from high-energy protons, which hardly cool in contrast with electrons. Metal abundances of the diffuse X-ray gas may indicate the explosion of a massive star in the past.
205 - Jiren Liu , Shude Mao 2015
We present an analysis of the diffuse soft X-ray emission from the nuclear region of M51 combining both XMM-Newton RGS and Chandra data. Most of the RGS spectrum of M51 can be fitted with a thermal model with a temperature of $sim0.5$ keV except for the OVII triplet, which is forbidden-line dominated. The Fe L-shell lines peak around the southern cloud, where the OVIII and NVII Lya lines also peak. In contrast, the peak of the OVII forbidden line is about 10$$ offset from that of the other lines, indicating that it is from a spatially distinct component. The spatial distribution of the OVII triplet mapped by the Chandra data shows that most of the OVII triplet flux is located at faint regions near edges, instead of the southern cloud where other lines peak. This distribution of the OVII triplet is inconsistent with the photoionization model. Other mechanisms that could produce the anomalous OVII triplet, including a recombining plasma and charge exchange X-ray emission, are discussed.
151 - J.Kataoka , M.Tahara , T.Totani 2013
We present Suzaku X-ray observations along two edge regions of the Fermi Bubbles, with eight ~20 ksec pointings across the northern part of the North Polar Spur (NPS) surrounding the north bubble and six across the southernmost edge of the south bubb le. After removing compact X-ray features, diffuse X-ray emission is clearly detected and is well reproduced by a three-component spectral model consisting of unabsorbed thermal emission (temperature kT ~0.1 keV from the Local Bubble (LB), absorbed kT ~0.3 keV thermal emission related to the NPS and/or Galactic Halo (GH), and a power-law component at a level consistent with the cosmic X-ray background. The emission measure (EM) of the 0.3 keV plasma decreases by ~50% toward the inner regions of the north-east bubble, with no accompanying temperature change. However, such a jump in the EM is not clearly seen in the south bubble data. While it is unclear if the NPS originates from a nearby supernova remnant or is related to previous activity within/around the Galactic Center, our Suzaku observations provide evidence suggestive of the latter scenario. In the latter framework, the presence of a large amount of neutral matter absorbing the X-ray emission as well as the existence of the kT ~ 0.3 keV gas can be naturally interpreted as a weak shock driven by the bubbles expansion in the surrounding medium, with velocity v_exp ~300 km/s (corresponding to shock Mach number M ~1.5), compressing the GH gas to form the NPS feature. We also derived an upper limit for any non-thermal X-ray emission component associated with the bubbles and demonstrate, that in agreement with the findings above, the non-thermal pressure and energy estimated from a one-zone leptonic model of its broad-band spectrum, are in rough equilibrium with that of the surrounding thermal plasma.
After discovery of the Fermi bubbles, giant structures observed in radio to X-rays have been discussed as possi- ble evidence of past activities in the Galactic Center (GC). We report here on the analysis of Suzaku data pointing around the Loop I arc . The diffuse X-ray emission was well represented by the three-component model: (1) an unabsorbed thermal plasma with kT ~ 0.1 keV either from the Local Hot Bubble (LHB) and/or solar wind charge exchange (SWCX), (2) an absorbed thermal plasma regarded as a contribution from the Loop I and the Galactic halo (GH), and (3) an absorbed power-law component representing the cosmic X-ray background. The temper- ature of the absorbed thermal plasma was clustered in a range of 0.30 +- 0.02 keV along Loop I (ON regions), whereas the temperature was about 20 % lower in the cavity adjacent to the bubbles and Loop I (OFF regions) with 0.24 +- 0.03 keV. The emission measure (EM) varied along the Galactic latitude, and was well correlated with the count rate variation as measured with the ROSAT in 0.75 keV band. Although the amount of neutral gas was not conclusive to constrain on the distance to Loop I, the observed EM values rule out a hypothesis that the structure is close to the Sun; we argue that the Loop I is a distant, kpc structure of the shock-heated GH gas. We discuss the origin of apparent mismatch in the morphologies of the Fermi bubbles and the Loop I arc, suggesting a two-step explosion process in the GC.
126 - Laura Brenneman 2014
We have obtained a deep, simultaneous observation of the bright, nearby Seyfert galaxy IC 4329A with Suzaku and NuSTAR. Through a detailed spectral analysis, we are able to robustly separate the continuum, absorption and distant reflection components in the spectrum. The absorbing column is found to be modest at $N_H = 6 times 10^{21}$ cm$^2$, and does not introduce any significant curvature in the Fe K band. We are able to place a strong constraint on the presence of a broadened Fe K{alpha} line: $E = 6.46^{+0.08}_{-0.07}$ keV rest frame with ${sigma} = 0.33^{+0.08}_{-0.07}$ keV and $EW = 34^{+8}_{-7}$ eV, though we are not able to constrain any of the parameters of a relativistic reflection model. These results highlight the range in broad Fe K{alpha} line strengths observed in nearby, bright AGN (roughly an order of magnitude), and imply a corresponding range in the physical properties of the inner accretion disk in these sources. We have also updated our previously reported measurement of the high-energy cutoff of the hard X-ray emission using both observatories rather than just NuSTAR alone: $E_{cut} = 186 pm 14$ keV. This high-energy cutoff acts as a proxy for the temperature of the coronal electron plasma, enabling us to further separate this parameter from the optical depth of the plasma and to update our results for these parameters as well. We derive $kT = 50^{+6}_{-3}$ keV with ${tau} = 2.34^{+0.16}_{-0.11}$ using a spherical geometry, $kT = 61 pm 1$ keV with ${tau} = 0.68 pm 0.02$ for a slab geometry, with both having an equivalent goodness-of-fit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا