ترغب بنشر مسار تعليمي؟ اضغط هنا

Suzaku observations of the diffuse x-ray emission across the fermi bubbles edges

153   0   0.0 ( 0 )
 نشر من قبل Jun Kataoka Dr.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Suzaku X-ray observations along two edge regions of the Fermi Bubbles, with eight ~20 ksec pointings across the northern part of the North Polar Spur (NPS) surrounding the north bubble and six across the southernmost edge of the south bubble. After removing compact X-ray features, diffuse X-ray emission is clearly detected and is well reproduced by a three-component spectral model consisting of unabsorbed thermal emission (temperature kT ~0.1 keV from the Local Bubble (LB), absorbed kT ~0.3 keV thermal emission related to the NPS and/or Galactic Halo (GH), and a power-law component at a level consistent with the cosmic X-ray background. The emission measure (EM) of the 0.3 keV plasma decreases by ~50% toward the inner regions of the north-east bubble, with no accompanying temperature change. However, such a jump in the EM is not clearly seen in the south bubble data. While it is unclear if the NPS originates from a nearby supernova remnant or is related to previous activity within/around the Galactic Center, our Suzaku observations provide evidence suggestive of the latter scenario. In the latter framework, the presence of a large amount of neutral matter absorbing the X-ray emission as well as the existence of the kT ~ 0.3 keV gas can be naturally interpreted as a weak shock driven by the bubbles expansion in the surrounding medium, with velocity v_exp ~300 km/s (corresponding to shock Mach number M ~1.5), compressing the GH gas to form the NPS feature. We also derived an upper limit for any non-thermal X-ray emission component associated with the bubbles and demonstrate, that in agreement with the findings above, the non-thermal pressure and energy estimated from a one-zone leptonic model of its broad-band spectrum, are in rough equilibrium with that of the surrounding thermal plasma.



قيم البحث

اقرأ أيضاً

We report on Suzaku observations of large-scale X-ray structures possibly related with the Fermi Bubbles obtained in 2013 with a total duration of ~ 80 ks. The observed regions were the: (i) northern cap (N-cap; l ~ 0 deg, 45 deg < b < 55 deg) seen i n the Mid-band (1.7-4.0 keV) map recently provided by MAXI-SSC and (ii) southeast claw (SE-claw; l ~ 10 deg, -20 deg < b < -10 deg) seen in the ROSAT all-sky map and MAXI-SSC Low-band (0.7-1.7 keV) map. In each region, we detected diffuse X-ray emissions which are represented by a three component plasma model consisting of an unabsorbed thermal component (kT ~ 0.1 keV) from the Local Bubble, absorbed kT = 0.30+/-0.05 keV emission representing the Galactic Halo, and a power-law component due to the isotropic cosmic X-ray background radiation. The emission measure of the GH component in the SE-claw shows an excess by a factor of ~ 2.5 over the surrounding emission at 2 deg away. We also found a broad excess in the 1.7-4.0 keV count rates across the N-cap after compiling other archival data from Suzaku and Swift. The spectral stacking analysis of the N-cap data indicates the presence of another thermal component with kT = 0.70 (+0.22,-0.11) keV. The temperature of kT ~ 0.3 keV of the Galactic Halo is higher than the ubiquitous value of kT ~ 0.2 keV near the Fermi Bubbles, and can be even higher (~ 0.7 keV). We discuss our findings in the context of bubble-halo interaction.
202 - J. Kataoka , M. Tahara , T. Totani 2015
In our previous works (Kataoka et al. 2013, Tahara et al. 2015), we found absorbed thermal X-ray plasma with kT ~ 0.3 keV observed ubiquitously near the edges of the Fermi bubbles and interpreted this emission as weakly shock-heated Galactic halo (GH ) gas. Here we present a systematic and uniform analysis of archival Suzaku (29 pointings; 6 newly presented) and Swift (68 pointings; 49 newly presented) data within Galactic longitudes |l| < 20 deg and latitude 5 deg < |b| < 60 deg, covering the whole extent of the Fermi bubbles. We show that the plasma temperature is constant at kT = 0.30+-0.07 keV, while the emission measure (EM) varies by an order of magnitude, increasing toward the Galactic center (i.e., low |b|) with enhancements at the north polar spur (NPS), SE-claw and NW-clump features. Moreover, the EM distribution of kT ~ 0.30 keV plasma is highly asymmetric in the northern and southern bubbles. Although the association of the X-ray emission with the bubbles is not conclusive, we compare the observed EM properties with simple models assuming (i) a filled halo without bubbles, whose gas density follows a hydrostatic isothermal model (King profile) and (ii) a bubble-in-halo in which two identical bubbles expand into the halo forming thick shells of swept halo gas. We argue that the EM profile in the north (b > 0 deg) favors (ii), whereas that of the south (b < 0 deg) is rather close to (i), but weak excess signature is clearly detected also in the south like NPS (South Polar Spur; SPS). Such an asymmetry, if due to the bubbles, cannot be fully understood only by the inclination of bubbles axis against the Galactic disk normal, thus suggesting asymmetric outflow due to different environmental/initial condition.
127 - Y. Fukazawa , S. Tokuda , R. Itoh 2015
We performed a systematic X-ray study of eight nearby $gamma$-ray bright radio galaxies with {em Suzaku} for understanding the origin of their X-ray emissions. The {em Suzaku} spectra for five of those have been presented previously, while the remain ing three (M,87, PKS,0625$-$354, and 3C,78) are presented here for the first time. Based on the Fe-K line strength, X-ray variability, and X-ray power-law photon indices, and using additional information on the [O III] line emission, we argue for a jet origin of the observed X-ray emission in these three sources. We also analyzed five years of {em Fermi} Large Area Telescope (LAT) GeV gamma-ray data on PKS,0625$-$354 and 3C,78 to understand these sources within the blazar picture. We found significant $gamma$-ray variability in the former object. Overall, we note that the {em Suzaku} spectra for both PKS,0625$-$354 and 3C,78 are rather soft, while the LAT spectra are unusually hard when compared with other $gamma$-ray detected low-power (FR,I) radio galaxies. We demonstrate that the constructed broad-band spectral energy distributions of PKS,0625$-$354 and 3C,78 are well described by a one-zone synchrotron/synchrotron self-Compton model. The results of the modeling indicate lower bulk Lorentz factors compared to those typically found in other BL Lac objects, but consistent with the values inferred from modeling other LAT-detected FR,I radio galaxies. Interestingly, the modeling also implies very high peak ($sim 10^{16}$,Hz) synchrotron frequencies in the two analyzed sources, contrary to previously-suggested scenarios for FR I/BL Lac unification. We discuss the implications of our findings in the context of the FR,I/BL Lac unification schemes.
The Fermi bubbles were possibly created by large injections of energy into the Galactic Center (GC), either by an active galactic nucleus (AGN) or by nuclear starburst more than ~10 Myr ago. However, the origin of the diffuse gamma-ray emission assoc iated with Loop I, a radio continuum loop spanning across 100 deg on the sky, is still being debated. The northern-most part of Loop I, known as the North Polar Spur (NPS), is the brightest arm and is even clearly visible in the ROSAT X-ray sky map. In this paper, we present a comprehensive review on the X-ray observations of the Fermi bubbles and their possible association with the NPS and Loop I structures. Using uniform analysis of archival Suzaku and Swift data, we show that X-ray plasma with kT ~ 0.3 keV and low metal abundance (Z ~ 0.2 Z_solar) is ubiquitous in both the bubbles and Loop I and is naturally interpreted as weakly shock-heated Galactic halo gas. However, the observed asymmetry of the X-ray-emitting gas above and below the GC has still not been resolved; it cannot be fully explained by the inclination of the axis of the Fermi bubbles to the Galactic disk normal. We argue that the NPS and Loop I may be asymmetric remnants of a large explosion that occurred before the event that created the Fermi bubbles, and that the soft gamma-ray emission from Loop I may be due to either pi^0 decay of accelerated protons or electron bremsstrahlung.
A southwest region of the Carina nebula was observed with the Suzaku observatory for 47 ks in 2010 December. This region shows distinctively soft X-ray emission in the Chandra campaign observations. Suzaku clearly detects the diffuse emission above k nown foreground and background components between 0.4-5 keV at the surface brightness of 3.3x10^-14 erg s^{-1} arcmin^{-2}. The spectrum requires two plasma emission components with kT~0.2 and 0.5 keV, which suffer interstellar absorption of N_H~1.9x10^{21} cm^{-2}. Multiple absorption models assuming two temperature plasmas at ionization equilibrium or non-equilibrium are tested but there is no significant difference in terms of chi^2/d.o.f.. These plasma temperatures are similar to those of the central and eastern parts of the Carina nebula measured in earlier Suzaku observations, but the surface brightness of the hot component is significantly lower than those of the other regions. This means that these two plasma components are physically separated and have different origins. The elemental abundances of O, Ne and Mg with respect to Fe favor that the diffuse plasma originates from core-collapsed supernovae or massive stellar winds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا