ﻻ يوجد ملخص باللغة العربية
This paper studies the K-theory of categories of partially cancellative monoid sets, which is better behaved than that of all finitely generated monoid sets. A number of foundational results are proved, making use of the formalism of CGW-categories due to Campbell and Zakharevich, and numerous example computations are provided.
We develop the K-theory of sets with an action of a pointed monoid (or monoid scheme), analogous to the $K$-theory of modules over a ring (or scheme). In order to form localization sequences, we construct the quotient category of a nice regular category by a Serre subcategory.
We study the algebraic $K$-theory and Grothendieck-Witt theory of proto-exact categories of vector bundles over monoid schemes. Our main results are the complete description of the algebraic $K$-theory space of an integral monoid scheme $X$ in terms
The K-theory of a functor may be viewed as a relative version of the K-theory of a ring. In the case of a Galois extension of a number field F/L with rings of integers A/B respectively, this K-theory of the norm functor is an extension of a subgroup
We construct an analytic multiplicative model of smooth K-theory. We further introduce the notion of a smooth K-orientation of a proper submersion and define the associated push-forward which satisfies functoriality, compatibility with pull-back diag
In nature, one observes that a K-theory of an object is defined in two steps. First a structured category is associated to the object. Second, a K-theory machine is applied to the latter category to produce an infinite loop space. We develop a genera