ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence of large polarons in photoemission band mapping of the perovskite semiconductor CsPbBr$_3$

121   0   0.0 ( 0 )
 نشر من قبل Michele Puppin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Lead-halide perovskite (LHP) semiconductors are emergent optoelectronic materials with outstanding transport properties which are not yet fully understood. We find signatures of large polaron formation in the electronic structure of the inorganic LHP CsPbBr$_3$ by means of angle-resolved photoelectron spectroscopy. The experimental valence band dispersion shows a hole effective mass $0.26pm0.02,,m_e$, 50% heavier than the bare mass $m_0 =0.17 m_e$ predicted by density functional theory. Calculations of electron-phonon coupling indicate that phonon dressing of the carriers mainly occurs via distortions of the Pb-Br bond with a Frohlich coupling parameter $alpha=1.82$. A good agreement with our experimental data is obtained within the Feynmann polaron model, validating a viable theorical method to predict the carrier effective mass of LHPs ab-initio.

قيم البحث

اقرأ أيضاً

Perovskite photovoltaic ABX$_3$ systems are being studied due to their high energy-conversion efficiencies with current emphasis placed on pure inorganic systems. In this work, synchrotron single-crystal diffraction measurements combined with second harmonic generation measurements reveal the absence of inversion symmetry below room temperature in CsPbBr$_3$. Local structural analysis by pair distribution function and X-ray absorption fine structure methods are performed to ascertain the local ordering, atomic pair correlations, and phase evolution in a broad range of temperatures. The currently accepted space group assignments for CsPbBr$_3$ are found to be incorrect in a manner that profoundly impacts physical properties. New assignments are obtained for the bulk structure: $Im$$bar{3}$ (above $sim$ 410 K), $P$2$_1$/$m$ (between $sim$ 300 K and $sim$ 410 K), and the polar group $Pm$ (below $sim$ 300 K), respectively. The newly observed structural distortions exist in the bulk structure consistent with the expectation of previous photoluminescence and Raman measurements. High-pressure measurements reveal multiple low-pressure phases, one of which exists as a metastable phase at ambient pressure. This work should help guide research in the perovskite photovoltaic community to better control the structure under operational conditions and further improve transport and optical properties.
Band bending is a central concept in solid-state physics that arises from local variations in charge distribution especially near semiconductor interfaces and surfaces. Its precision measurement is vital in a variety of contexts from the optimisation of field effect transistors to the engineering of qubit devices with enhanced stability and coherence. Existing methods are surface sensitive and are unable to probe band bending at depth from surface or bulk charges related to crystal defects. Here we propose an in-situ method for probing band bending in a semiconductor device by imaging an array of atomic-sized quantum sensing defects to report on the local electric field. We implement the concept using the nitrogen-vacancy centre in diamond, and map the electric field at different depths under various surface terminations. We then fabricate a two-terminal device based on the conductive two-dimensional hole gas formed at a hydrogen-terminated diamond surface, and observe an unexpected spatial modulation of the electric field attributed to a complex interplay between charge injection and photo-ionisation effects. Our method opens the way to three-dimensional mapping of band bending in diamond and other semiconductors hosting suitable quantum sensors, combined with simultaneous imaging of charge transport in complex operating devices.
148 - M. Stubinger 2021
The heterostructure consisting of the Mott insulator LaVO$_3$ and the band insulator SrTiO$_3$ is considered a promising candidate for future photovoltaic applications. Not only does the (direct) excitation gap of LaVO$_3$ match well the solar spectr um, but its correlated nature and predicted built-in potential, owing to the non-polar/polar interface when integrated with SrTiO$_3$, also offer remarkable advantages over conventional solar cells. However, experimental data beyond the observation of a thickness-dependent metal-insulator transition is scarce and a profound, microscopic understanding of the electronic properties is still lacking. By means of soft and hard X-ray photoemission spectroscopy as well as resistivity and Hall effect measurements we study the electrical properties, band bending, and band alignment of LaVO$_3$/SrTiO$_3$ heterostructures. We find a critical LaVO$_3$ thickness of five unit cells, confinement of the conducting electrons to exclusively Ti 3$d$ states at the interface, and a potential gradient in the film. From these findings we conclude on electronic reconstruction as the driving mechanism for the formation of the metallic interface in LaVO$_3$/SrTiO$_3$.
Perovskite oxides ABO$_3$ containing heavy B-site elements are a class of candidate materials to host topological metals with a large spin-orbit interaction. In contrast to the band insulator BaSnO$_3$, the semimetal BaPbO$_3$ is proposed to be a typ ical example with an inverted band structure, the conduction band of which is composed of mainly the O-2p orbital. In this study, we exemplify a band-gap modification by systematic structural, optical, and transport measurements in BaSn$_{1-x}$Pb$_x$O$_3$ films. A sudden suppression of the conductivity and an enhancement of the weak antilocalization effect at $x$ = 0.9 indicate the presence of a singular point in the electronic structure as a signature of the band inversion. Our findings provide an intriguing platform for combining topological aspects and electron correlation in perovskite oxides based on band-gap engineering.
The bulk band structure of the topological insulator sbte~ is investigated by angle-resolved photoemission spectroscopy. Of particular interest is the dispersion of the uppermost valence band with respect to the topological surface state Dirac point. The valence band maximum has been calculated to be either near the Brillouin zone centre or in a low-symmetry position in the $bar{Gamma}-bar{M}$ azimuthal direction. In order to observe the full energy range of the valence band, the strongly p-doped crystals are counter-doped by surface alkali adsorption. The data show that that the absolute valence band maximum is likely to be found at the bulk $Gamma$ point and predictions of a low-symmetry position with an energy higher than the surface Dirac point can be ruled out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا