ﻻ يوجد ملخص باللغة العربية
Autonomous exploration of unknown environments with aerial vehicles remains a challenge, especially in perceptually degraded conditions. Dust, fog, or a lack of visual or LiDAR-based features results in severe difficulties for state estimation algorithms, which failure can be catastrophic. In this work, we show that it is indeed possible to navigate in such conditions without any exteroceptive sensing by exploiting collisions instead of treating them as constraints. To this end, we present a novel contact-based inertial odometry (CIO) algorithm: it uses estimated external forces with the environment to detect collisions and generate pseudo-measurements of the robot velocity, enabling autonomous flight. To fully exploit this method, we first perform modeling of a hybrid ground and aerial vehicle which can withstand collisions at moderate speeds, for which we develop an external wrench estimation algorithm. Then, we present our CIO algorithm and develop a reactive planner and control law which encourage exploration by bouncing off obstacles. All components of this framework are validated in hardware experiments and we demonstrate that a quadrotor can traverse a cluttered environment using an IMU only. This work can be used on drones to recover from visual inertial odometry failure or on micro-drones that do not have the payload capacity to carry cameras, LiDARs or powerful computers.
Advances in micro-electro-mechanical (MEMS) techniques enable inertial measurements units (IMUs) to be small, cheap, energy efficient, and widely used in smartphones, robots, and drones. Exploiting inertial data for accurate and reliable navigation a
Ego-motion estimation is a fundamental requirement for most mobile robotic applications. By sensor fusion, we can compensate the deficiencies of stand-alone sensors and provide more reliable estimations. We introduce a tightly coupled lidar-IMU fusio
To achieve robust motion estimation in visually degraded environments, thermal odometry has been an attraction in the robotics community. However, most thermal odometry methods are purely based on classical feature extractors, which is difficult to e
Leveraging line features can help to improve the localization accuracy of point-based monocular Visual-Inertial Odometry (VIO) system, as lines provide additional constraints. Moreover, in an artificial environment, some straight lines are parallel t
Motion estimation by fusing data from at least a camera and an Inertial Measurement Unit (IMU) enables many applications in robotics. However, among the multitude of Visual Inertial Odometry (VIO) methods, few efficiently estimate device motion with